УДК 621.311.25

В. В. Студинский; А. М. Головченко, к. т. н., доц.; И. В. Штуй

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И ИССЛЕДОВАНИЕ ТЕПЛОВОЙ СХЕМЫ МИНИ-ТЭЦ НА ШЕЛУХЕ

Рассмотрен метод математического моделирования, который позволяет рассматривать большое количество перспективных и модернизацию существующих тепловых схем котельных и ТЭЦ. На основе данного метода сделана система компьютерного проектирования тепловых схем.

Ключевые слова: промышленно-отопительная котельная, теплоэнергетическая установка, масло-жир комбинат, математическое моделирование, логико-числовое моделирование, граф, дуга, информационная сеть, мнемосхема.

Актуальность

Задача повышения эффективности использования газа приводит к переходу от типовых тепловых схем котельных к индивидуальным схемам, которые усложнены турбинами, двигателями внутреннего сгорания, тепловыми насосами, теплоутилизаторами и тому подобное. Перечень топлив котельных расширяется топливами растительного происхождения, биогазами, отходами перерабатывающей промышленности. Системный характер отмеченной задачи вызывает необходимость ее рассмотрения в комплексе с экологическими, биологическими, медицинскими, экономическими и техническими проблемами.

Особенностью проектных расчетов котельных является неопределенность изменений в течение будущего срока эксплуатации части начальных данных, особенно, удельных стоимостных показателей. Увеличение количества элементов схем и возможных комбинаций их соединений между собой, расширение диапазонов изменений начальных данных, факторы системности и неопределенности значительно усложняют выбор окончательного варианта тепловой схемы котельной.

Актуальность результатов данной работы заключается в возможности их использования для синтеза и анализа тепловых схем промышленных котельных при их превращении в мини-ТЭЦ.

Постановка задачи

Агрегаты котельной и связи между ними изображаются на тепловых схемах. Задачи многочисленных исследований, проектирования и эксплуатации тепловых схем котельных следующие:

- синтез тепловой схемы с оптимальными структурами и параметрами;
- исследование оптимизированной схемы на режимах, отличающихся от базовых;
- технико-экономические обоснования предложений по повышению эффективности котельных, которые находятся в эксплуатации.

При решении задач первого типа выполняется комплексная оптимизация элементов тепловой схемы, в том числе: выбор котлов, тепловых двигателей, насосов, водоподготовительной установки, теплообменников, баков, трубопроводов, тепловой изоляции и т.д.

Режимные исследования тепловых схем необходимы для расчетов на прочность элементов оборудования котельной, разработки системы защиты, автоматики, сигнализации и для составления инструкций по эксплуатации ее агрегатов.

Математически задача синтеза и анализа тепловой схемы котельной может быть записана следующим образом. Найти значение целевой функции при ограничениях в виде равенств и

неравенств:

$$F(X,Y,\Lambda,G_j) = 0 \tag{1}$$

$$X^{\min} \le X \le X^{\max}, \qquad Y^{\min} \le Y \le Y^{\max},$$

$$X \in \{X_{\scriptscriptstyle H},X_{\scriptscriptstyle \partial}\}, \qquad \Lambda \in \{\Lambda_{\scriptscriptstyle \partial},\Lambda_{\scriptscriptstyle \theta}\},$$

$$G_j \in \varGamma,$$

где F — система уравнений описания процессов и конструктивно экономических оценок оборудования тепловой схемы структуры G_j из конечного множественного числа структур Γ ; Xн, X ∂ — совокупность соответственно непрерывных и дискретных независимых переменных; Y — совокупность зависимых переменных; Λ — совокупность внешних детерминированных параметров Λ_{∂} и вероятностный переменных во времени параметров Λ_{∂} .

Синтез оптимальной тепловой схемы сводится к построению управления по X, Y, G_j с целью оптимизации функционала. Режимные исследования схемы являют собой нахождение значений Y при заданных X, G_j .

Современный уровень численных исследований теплоэнергетических установок определяет следующие требования к методу решения задач исследований котельных установок:

- возможность учета системных факторов;
- возможность комплексной оптимизации при проектировании тепловых схем и оборудования котельных;
 - возможность учета начальной неопределенности.

Котельная является составной частью системы теплоэнергоснабжения одного или нескольких предприятий. Поэтому по мере детализации уровни разработки тепловой схемы котельной могут быть следующими:

- выбор конфигурации системы теплоэнергоснабжения предприятий района;
- тепловая схема котельной;
- агрегаты котельной.

Анализ имеющихся методов

Решению задач синтеза и анализа тепловых схем мини-ТЭЦ, созданных из промышленно отопительных котельных, посвящены ряд исследований. Например, в работе [1] представлена трехуровневая структура синтеза оптимальной тепловой схемы: графовое моделирование и анализ базовой тепловой схемы, синтез возможных вариантов, определения наиболее оптимальной схемы.

Автор распределяет поставленную задачу на несколько этапов: элементы конструкции – аппарат – установка – агрегат – технологическая система – котельная. Аналогичным к графу схемы является информационная блок-схема тепловой схемы котельной. Каждый блок является аналогом узла графа, а потоки – аналогом дуги графа.

Граф также представлено в виде материально-потокового графа, теплового потокового графа и эксергетического графа. Синтез тепловой схемы проводится графоаналитическим методом. Определяется количество входных и исходных потоков из каждого узла графа. Количество и вид уравнений представляет математическую модель тепловой схемы.

Критериями оценки эффективности тепловой схемы являются технико-экономические показатели. В работах [2, 3] выполняется оптимизация тепловой схемы и ее модернизация на основе определения технико-экономических показателей нескольких возможных вариантов.

Рассмотренные методы являются достаточно эффективными инструментами синтеза и

анализа промышленно-отопительных котельных. Однако они не отвечают сформулированным выше требованиям и недостаточно учитывают специфику задач превращения котельной в мини-ТЭЦ.

Обоснование результатов исследования

В данной работе задача синтеза и анализа тепловых схем котельных решается методом, который является развитием метода математического моделирования тепловых схем теплоэнергетических установок [4] в направлении моделирования промышленных котельных и мини-ТЕЦ.

Основными элементами метода являются следующие методики:

- передача конструктивно технологических структур котельных;
- логико-числовые моделирования физических процессов в оборудовании котельных;
- адаптация математических моделей оборудования к методикам его расчетов в конструкторских бюро;

управление программной реализацией математической модели котельных.

Для передачи структуры промышленной котельной используются графовые представления. Элементы тепломеханичного оборудования отображаются узлами графа, а связи между ними — дугами графа. Ориентация дуг графа совпадает с направлением движения энергоносителей. Конструктивно технологическое соответствие оборудования котельной графу достигается присвоением кодов его узлам. Закодированный (технологический) граф имеет вид:

$$G^{T} = (K_{B}^{i}, N_{B}^{i}) \Leftrightarrow U_{k=1}^{P} N_{\partial}^{j}, \tag{2}$$

где K_B^i , N_B^i — конструктивно технологических кодов узла i и дуги j; $U_{k=1}^P$ — множество дуг инцидентных узлу; N_B^i , N_δ^i — номер дуги j. Индексы i и j определяют положение N_B^i и N_δ^j в списках номеров узлов и дуг. Граф интерпретируется как информационная сеть (И-сеть), потоками которой являются параметры энергоносителей Y_j =($y_1,y_2,...,y_n$), в технологических связях (дуга графа), а параметрами источников — характеристики X_j =($x_1,x_2,...,x_m$) элементов оборудования (узлов графа). При этом коды дуг и узлов определяют внутренние структуры информационных групп $y_1,y_2,...,y_n$ и $x_1,x_2,...,x_m$, а их номера — положение этих групп в ряду других. На Т-графе определена система DF логических (декодирующих) функций, которые получают те или иные предметные характеристики (кодов, термов) элементов графа. С помощью логических функций строятся высказывательные функции (предикаты) l_i (G_t , DF), которые принимают значение 0 или 1 в зависимости от выполнения определенных условий. Например, принадлежит или не принадлежит код данного узла подмножеств i кодов узлов котлу, принадлежит или не принадлежит данная дуга подмножеств дуг инцидентных некоторому узлу и т. д.

Физические процессы в промышленной котельной описываются системой уравнений сохранения, а именно: массы, количества движения, энергии; уравнений прироста энтропии и состояния рабочих тел и теплоносителей. Основная особенность этой системы состоит в том, что количество и вид уравнений каждого типа зависит от технологической установки (числа аппаратов, их назначения, средства соединения, конструктивного выполнения), то есть от логической информации. Эта особенность предопределяет целесообразность представления математической модели промышленной котельной в виде совокупности логико-числовых операторов, отображающих трансформацию форм уравнений названных типов (числовых функций) в зависимости от технологических кодов узлов и дуг графа (логических переменных), и автоматически формирующих на графе необходимую систему уравнений. Математическая модель котельной имеет вид:

$$\Delta 3_{\rm s}(G^{\rm T}, I, DF) / \Delta_{\rm r} LT(G^{\rm T}, I, DF) = 0, r = 1, 2...s,$$
 (3)

где Δ — знак логико-числового оператора; $\Delta 3_{\Sigma}$ — оператор качества варианта котельной; Lt — идентификатор логико-числового оператора; C_i^{min} , C_i^{max} — графические значения параметров информационной сети W_i ; G^T — технологический граф схемы котельной.

Каждый из логико-числовых операторов является совокупностью иерархически подчиненных логико-числовых модулей:

где lt_i – логико-числовой модуль r-го уровня. Модуль записывается как произведение высказывательной и числовой функции:

$$\Delta lti(G \tau, I, \mathcal{A}F) = li (KB, KA, \mathcal{A}F) *ti(x,y); x,y \in I,$$
 (5)

где I – высказывательная функция; t – числовая функция (уравнение процесса); x, y – зависимые и независимые переменные.

Совместимость математической модели с методиками расчетов ее оборудования в конструкторских бюро достигается идентификацией модели оборудования по экспериментальным (расчетными или фактическими) данным.

Работа модели (2) заключается в переборе узлов графа, выделении кодов узлов и дуг декодирующими функциями ДF и обращении к соответствующим кодам узлов трансформаций уравнений системы. Система решается методом итераций.

Математическая модель реализована системой компьютерного проектирования тепловых схем котельных. Данная система содержит математические описания промышленного котла, противодавленческой и конденсационной турбин, турбопривода питательного насоса, циркуляционных и питательных насосов, деаэратора, охладителя испарения деаэратора, водо-водяных и паро-водяных теплообменников, конденсатора турбоустановки, электрогенератора, газоохладителя, расширителя непрерывной продувки, эжектора, точки смешивания, тепловых потребителей и источников энергии. Турбина представлена следующим оборудованием: клапанами, регулирующей ступенью, промежуточной ступенью, последней ступенью, выхлопом, точками отбора пары.

Блок-схема системы компьютерного проектирования тепловых схем котельных установок представлена на рис. 1.

В этой блок-схеме логико-числовые операторы ∇F , ∇P , ∇P , $\nabla \Pi$, ∇E определяют соответственно технико-экономические показатели, расходы теплоносителей, давления в элементах тепловой схемы, КПД турбины, энтальпии и мощности двигателей.

Комплексную оптимизацию тепловых схем и оборудование котельных предлагается выполнять следующим образом: на первых этапах исследования системы теплоэнергоснабжение промышленных предприятий является целесообразным использование метода системного анализа [5]. За этим методом функция качества системы F

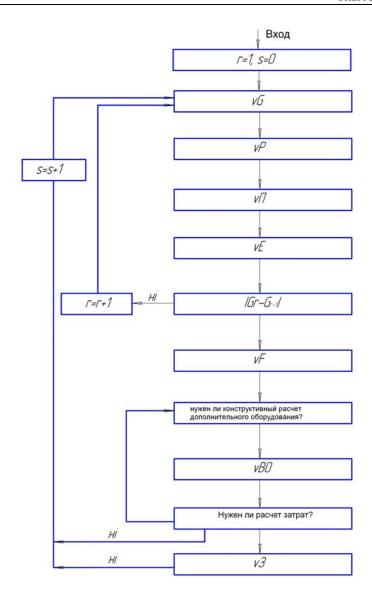


Рис. 1. Блок-схема системы компьютерного проектирования тепловых схем

в нормированном виде имеет вид:

$$F(x_1, x_2, ..., x_n) = \sum_{i=1}^{n} k_i F_i(x_i),$$
(6)

где n — общее количество параметров; $F_i(x_i)(i=1...n)$ — нормированные одномерные функции полезности; k_i — весовые коэффициенты, которые характеризуют ценностные соотношения между отдельными критериями.

Ограничением метода являются условия независимости пары критериев (X_i, X_j) (i=1...n-1, j=i+1...n) по преимуществу от других критериев. С учетом этого функция $F(x_1, x_2, ..., x_n)$ вычисляется в такой последовательности:

- 1. Назначение критериев x_i и их наихудшего и наилучшего уровней;
- 2. Определение независимости критериев x_i , по преимуществу;
- 3. Определение одномерных функций $F_i(x_i)$;

- 4. Определение взвешивающих коэффициентов k_i ;
- 5. Расчет $F(x_1, x_2, ..., x_n)$.

Проверка независимости сводится к отысканию таких случаев, когда структура преимуществ эксперта нарушает предположение о независимости. Если таких случаев нет, условия независимости выполнены. Если такие случаи есть, тогда необходимо изменить критерии.

Определение одномерных функций $F_i(x_i)$, которое выполняется экспертом, осуществляется графически рис. 2. Для каждого из параметров задаются его наихудшее и наилучшее значение. Значению $x_i = x_i^{\text{наихудиций}}$ отвечает значение одномерной функции, которая равняется нулю, а значению $x_i = x_i^{\text{наихучиций}}$ отвечает значение равное 1, то есть :

$$F_i(x_i) = \begin{cases} 0, x_i = x^{\text{наихучше}} \\ 1, x_i = x^{\text{наихучше}} \end{cases}$$
 (7)

Третья точка на графике находится с помощью случайного выбора. Необходимо найти такой детерминированный эквивалент, при котором его полезность $F_i(x_i^{\partial emep_M})$ равна ожилаемой:

$$F_i(x_i^{\partial emep.m.}) = 0.5F_i(x_i^{hauxy\partial uuue}) + 0.5F_i(x_i^{hauxyuuee}) = 0.5.$$
 (8)

Графики аппроксимируются параболическими функциями.

Весовые коэффициенты оцениваются в два этапа: сначала они ранжируются по важности, а затем определяются численные значения весовых коэффициентов. Это выполняется путем установления ценностных соотношений между критериями. Эти соотношения определяют возможное изменение одного критерия за счет другого. Осуществляется такая оценка коэффициентов, как и при построении одномерных функций, при непосредственном участии эксперта.

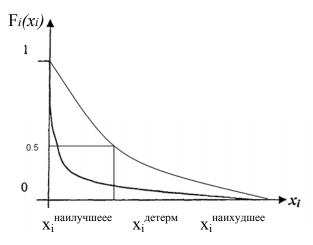


Рис. 2. Построение одномерных функций полезности

Теперь, имея значение коэффициентов k_i , зная вид одномерных функций $F_i(x_i)$, можем вычислить и значение множественной функции $F(x_1, x_2, ..., x_n)$.

На втором этапе выполняется синтез схемы котельной, который заключается в нахождении минимум 3_{Σ} в результате оптимизации ее структур и параметров. Структурой является схема котельной с определенным количеством элементов, технологическими назначениями этих элементов и способов сочетания элементов между собой. Оптимизация структур происходит с помощью перебора из списка возможных структур Γ . Оптимизация Наукові праці ВНТУ, 2009, № 1

параметров X, с учетом неопределенности исходной информации $\Lambda_{\text{в}}$, выполняется в такой последовательности. Параметры оборудования котельных установок можно разделить на внешние и внутренние. К внешним (схемных) относятся параметры энергоносителей на входах и выходах элемента оборудования. Внутренними являются конструкторские параметры этого элемента.

При оптимизации схемных параметров неопределенность уменьшается следующим образом. Экспертными оценками определяется интервал изменений исходных удельных стоимостных и других технико-экономических показателей, формируются альтернативные наборы этих показателей (оптимистичный, средний, пессимистический) и выполняется оптимизация котельных установок для каждого набора показателей. Дальше исследуется постоянство найденных оптимальных параметров к изменениям исходной информации и из инженерных соображений выбирается окончательный вариант параметров схемы котельной.

Работоспособность предложенной методики комплексной оптимизации котельных проверялась на задачах выбора конфигурации системы теплоэнергоснабжения предприятий тепловой мощностью 30 МВт и модернизации котельной масложиркомбината.

В первом случае определялась целесообразная комбинация возможных источников тепловой и электрической энергии. Возможные источники тепловой энергии принятые такими: ВК – водогрейные котлы, ПК – паровые котлы, ТНУ – теплонасосные установки. Возможные источники электрической энергии приняты такими: ПТУ – паротурбинные установки, ГТУ – газотурбинные установки, ГПД – газопоршневые двигатели. Принятые критерии вариантов источников энергоснабжения приведенные в табл. 1.

Таблиця 1 Критерии вариантов источников энергоснабжения

Критерии	Лучший	Худший
	уровень	уровень
X1 – Вероятность несчастных случаев, 10 ⁻⁵	50	80
X2 – Вероятность пожаров и взрывов, 10 ⁻⁷	200	600
ХЗ – Зависимость от внешних источников, балов	0	100
X4 – Затраты на топливо, млн. грн/год	20,53	26,45
X5 – Затраты на электроэнергию от внешних потребителей, млн. грн/год	0	4,788
Х6 – Капиталовложения, млн. грн.	3,070	7,715
X7 – Выбросы CO ₂ , SO ₂ , NO ₂ , тонн / год	358,8	500
X8 – Зарплата, млн. грн/год	0,4	0,6
X9 – Вероятность отказов, балов	0	100
X10 – Уровень негативного влияния на персонал, балов	0	100
X11 – Затраты на воду, млн. грн/год	0,25	0,5
X12 – Затраты на ремонт, млн. грн/год	0,6	1
X13 – Затраты на строительство, млн. грн	40	50
X14 – Выручка от продаж электроэнергии, млн. грн/год	1,25	0

Рассматривались девять вариантов:

Вариант 1. Базовый; вариант 2. ПК, ВК и ПТУ; вариант 3. ПК и ГТУ; вариант 4. ПК и ПТУ; вариант 5. ПК, ВК и ГПД; вариант 6. ПК, ВК и ГТУ; вариант 7. ПК, ТНУ, ВК, ГТУ и ПТУ; вариант 8. ПК, ВК и ТНУ.

В качестве базового принят вариант с паровым котлом. Наиболее важные результаты расчетов приведены в таблице 2.

 Таблица 2

 Результаты расчетов системы теплоэнергоснабжения

Критерии	ПК		ПК+ВК+ПТ		ПК+ГПД		ПК+ПТУ	
Выручка от продаж электроэнергии, млн. грн/год	0	0	1,25	5,01*10 ⁻¹	0	0	1,25	5,01*10 ⁻¹
Затраты на электроэнергию от внешних источников, млн. грн/год	0,45	2,2*10-1	0	2,76*10 ⁻¹	0	2,76*10-1	0	2,76*10 ⁻¹
Затраты на топливо, млн. грн/год	25,6	127*10 ⁻²	21,43	9,26*10 ⁻²	25,85	8,95*10 ⁻³	25,6	1,26*10 ⁻²
Капиталовложения, млн. грн	3,76	4,75*10 ⁻²	4	4,24*10-2	3,83	4,6*10-2	4,76	2,8*10 ⁻²
Затраты на строительство, млн. грн	40	1,1*10-3	41,5	7,766*10 ⁻³	40,2	1,05*10-2	40,2	1,05*10-2
Вероятность отказов, %	0	8,56*10 ⁻³	28	4,17*10 ⁻³	25	4,48*10 ⁻³	20	5,29*10 ⁻³
Затраты на ремонт, млн. грн/год	0,6	4,9*10-3	0,75	2,055*10-3	0,7	2,5*10-3	0,65	3,7*10 ⁻³
Выбросы CO ₂ , SO ₂ , NO ₂ , тонн/год	493	6,37*10 ⁻⁵	363,7	2,949*10 ⁻³	500	0	493	6,37*10 ⁻⁵
Зависимость от внешних источников, %	100	0	0	1,18*10-3	0	1,18*10-3	0	1,18*10-3
Затраты на воду, млн. грн/год	0,25	1,04*10 ⁻³	0,25	1,045*10 ⁻³	0,25	1,04*10 ⁻³	0,25	1,044*10 ⁻³
Зарплата, млн. грн/год	0,4	4,15*10-4	0,435	3,194*10-4	0,43	3,32*10-4	0,44	3,065*10-4
Вероятность пожаров и взрывов 10-7, %	200	2,47*10 ⁻⁴	350	1,297*10 ⁻⁴	280	1,81*10-4	320	1,51*10 ⁻⁴
Уровень негативного влияния на персонал, %	0	2,27*10 ⁻⁴	40	8,77*10 ⁻⁵	60	5,85*10 ⁻⁵	35	9,5*10 ⁻⁵
Вероятность несчастных случаев, 10-5, %	50	7,98*10 ⁻⁵	63	3,22*10 ⁻⁵	55	5,92*10 ⁻⁵	57	5,17*10 ⁻⁵
Функция «Полезности»	0,3065		0,932		0,352		0,841	

Лучшими вариантами является паро-водогрейная котельная и паровая турбина с суммарной функцией полезности 0.93, паровая котельная с аналогичной турбиной с суммарной функцией полезности 0,84 и комбинация паро-водогрейной котельной с теплонасосной установкой.

Последний вариант достаточно сложен в реализации, хотя на четверть снижает затрату топлива относительно существующего варианта.

Наивысший показатель имеет вариант паро-водогрейные котлы и паровая турбина, поскольку имеет высокие значения критериев частей выручки от продажи электроэнергии, затрат на топливо и общих капиталовложений.

Вариант с паровыми котлами и паровой турбиной имеет немного большие затраты на топливо. Однако он имеет меньшие затраты на строительство, на ремонт, а также меньшую вероятность несчастных случаев. Поэтому в качестве окончательного целесообразным является вариант с паровыми котлами и паровой турбиной. Дальше определялась оптимальная структура и параметры тепловой схемы котельной с парогенератором по сжиганию шелухи и газа.

В исходной схеме установлены два котла E-16-39/380 и KE-10-14/25, которые потребляют 91 тонну шелухи за сутки. В результате расширение предприятия предусматривается увеличение количества потребляемой шелухи до 250 тонн на сутки. Для утилизации этой шелухи планируется установка двух котлов по проекту ООО СПКТБ «Энергомашпроект» E-16-39/360 и E-25-39/360.

Для выбора оборудования котельной, которая модернизируется, является целесообразным рассмотреть варианты тепловой схемы без турбин, с противодавленческой турбиной и с конденсационной турбиной. По критериям качества варианта схемы могут быть приняты суммарные приведенные затраты на ее оборудование. Часть начальных данных для определения являются недетерминированными в результате неопределенности их изменения в течение срока эксплуатации. С учетом этого сформированы альтернативные наборы входящих данных, таблица 3.

Таблица 3

Альтернативные наборы исходных данных

Попомотну	Альтернативные варианты				
Параметры	Пессимистический	Средний	Оптимистический		
Стоимость 1 тони топлива, грн	50	5	3		
Стоимость 1 кВт электроэнергии, коп	100	45	35		
Стоимость 1 Гкал тепловой энергии, грн	400	300	200		

Результаты расчетов вариантов тепловой схемы без турбины и с турбинами для среднего альтернативного набора входящих данных приведенные в таблице 4.

Таблица 4

Результаты расчетов тепловой схемы

Варианты схемы	Мощность турбины Ne, кВт	Тепловая мощность Q, Гкал	Разница суммарных приведенных затрат млн. грн/год
Базовый	0	27,45	0
С турбиной типа Р	2,6	26,405	- 5,303
С турбиной типа ПТ	6,8	15,26	- 7,898

В соответствии с расчетами наилучшие показатели имеет тепловая схема с турбиной ПТ, граф качества, наведена на рис. 3.

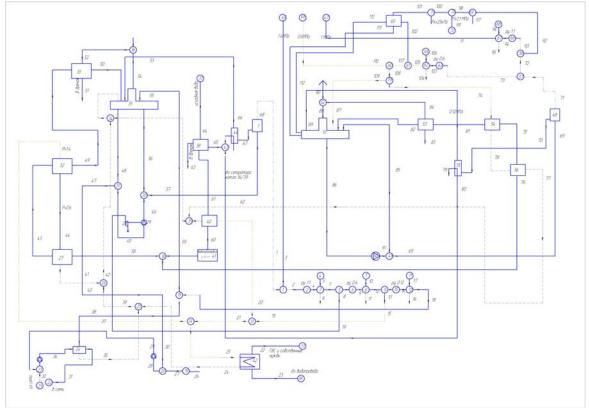


Рис. 3. Граф тепловой схемы промышленно отапливаемой котельной

В турбине этой схемы предусматривается конденсационная установка, параметры которой целесообразно оптимизировать. Параметры оптимизации, принятые следующими: n_{mp} – количество труб, G_{ox} – затрата охлаждающей воды, L_{mp} – длина труб и d_{mp} – внешний диаметр трубы. Характеристики начального и оптимального вариантов приведены в таблице 5.

Результаты оптимизации на 50% режиме

Варианты	n_{mp} , шт	G_{ox} , кг/с	L_{mp} , M	$d_{\it mp}$, mm	$\Delta 3_{\scriptscriptstyle \Sigma}$, тис. грн
Начальный	950	1400	4	14	0
Оптимальный	1220	3400	4,44	16	159,4

Как видно из результатов оптимизации, являются целесообразным 1220 кг/с проектного расхода охлаждающей воды и 3400 числа труб. Расчеты выполнялись при среднем альтернативном наборе начальных данных. Расчеты при других наборах данных дали практически те же результаты, то есть, назначенные параметры оптимизации являются стойкими к изменениям начальной информации.

Выводы

- 1. Известный метод математического моделирования теплоэнергетических установок развит в направлении математического моделирования промышленно-отопительных котельных и мини-ТЭЦ.
- 2. Разработана система компьютерного проектирования тепловых схем промышленной котельни и мини-ТЭЦ, которая позволяет выполнять их структурную и числовую оптимизацию.
- 3. Выполнены оптимизационные расчеты промышленно-отопительной котельни, которые показали целесообразность установки турбины типа ПТ с реконструированной конденсационной установкой.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кунеевский В. В. Анализ и синтез эффективных технологических схем котельных установок и усовершенствование их основных узлов: дис. на соиск. наук. степени к. т. н. / В. В. Кунеевский. Казань, 2006. 188 с.
- 2. Басс М. С. Повышение экономичности работы ТЭЦ с поперечными связями на основе оптимизации режимов работы и тепловой схемы: дис. на соиск. наук. степени к. т. н. / М.С. Басс. Улан-Удэ, 2006. 118 с.
- 3. Сигидов Я. Ю. Оптимизация структуры и параметров тепловых схем конденсационных парогазовых установок с котлами-утилизаторами трех давлений: дис. на соиск. наук. степени к. т. н. / Я. Ю. Сигидов. Москва, 2006. 198 с.
- 4. Головченко. А. М. Игровое проектирование энергетического оборудования / А. М. Головченко, Д. Б. Налбалдян. К. : УМК ВО, 1988. 236 с.
 - 5. Кини Р. Размещение энергетических объектов / Р. Кини. М.: Энергоатомиздат, 1985. 320 с.

Студинский Владислав Владимирович – аспирант кафедры теплоэнергетики, тел.: (0432)598-339.

Головченко Алексей Михайлович - к. т. н., доцент кафедры теплоэнергетики, тел.: (0432)598-339.

Штуй Игорь Владимирович — инженер Винницкого масложиркомбината, тел. (8067) 430-90-31. Винницкий национальный технический университет.