С. М. Захарченко, к. т. н., доц.

СТРУКТУРЫ ИНТЕГРАЛЬНЫХ КОНДЕНСАТОРОВ КАК ОСНОВА ПОСТРОЕНИЯ КОНДЕНСАТОРНЫХ МАТРИЦ ДЛЯ АЦП С ПЕРЕРАСПРЕДЕЛЕНИЕМ ЗАРЯДА С ВЕСОВОЙ ИЗБЫТОЧНОСТЬЮ

Проведен анализ современных методов реализации интегральных конденсаторов. Предложены конденсаторные структуры для построения конденсаторных матриц в составе АЦП с перераспределением заряда.

Ключевые слова: конденсаторная матрица, весовая избыточность, латеральный конденсатор, интегральные конденсаторные структуры.

На сегодняшний день АЦП с перераспределением заряда (ПРЗ) [1] занимают центральное место среди АЦП последовательного приближения средней и высокой точности. Этот факт объясняется рядом преимуществ этих устройств по сравнению с другими структурными реализациями, в частности меньшая потребляемая мощность, упрощенная структурная реализация за счет объединения отдельных элементов, возможность полной интегральной реализации по КМОП технологии, высокое быстродействие и точность. Одним из перспективных путей дальнейшего улучшения параметров таких устройств является использование весовой избыточности [2]. Этот подход предусматривает изменение соотношения между номиналами элементов конденсаторной матрицы, являющейся базовым компонентом АЦП с ПРЗ. Кроме того, для сохранения разрешающей способности преобразователя, возникает необходимость в удлинении разрядной сетки [3], то есть увеличивается количество элементов матрицы. Всё вышесказанное приводит к увеличению суммарной ёмкости конденсаторной матрицы АЦП с избыточностью по сравнению с традиционными двоичными, что, в свою очередь, требует увеличения площади кристалла для размещения дополнительных конденсаторов или использования новых структур интегральных конденсаторов, которые обеспечивают большую плотность упаковки.

Таким образом, ставится задача выбора структурной реализации интегральных конденсаторов и построение на ее основе конденсаторных матриц для АЦП с ПРЗ с весовой избыточностью.

Для решения поставленной задачи необходимо:

 оценить степень увеличения ёмкости конденсаторной матрицы с весовой избыточностью по сравнению с традиционными двоичными;

 проанализировать современные подходы для реализации интегральных конденсаторов и выбрать наиболее оптимальные для данной задачи;

 получить математические соотношения для расчета параметров интегральных конденсаторов.

Матрица весового типа в составе АЦП с ПРЗ формируется конденсаторами с номиналами C_0 , $C_0 \alpha$, $C_0 \alpha^2 \dots C_0 \alpha^{n-1}$, где C_0 – номинал конденсатора наименьшей ёмкости, α – основание системы исчисления, n – количество разрядов преобразователя. Тогда общая емкость конденсаторной матрицы будет определяться как

$$C_{\Sigma} = \sum_{i=0}^{n-1} C_0 \cdot \alpha^i = C_0 \cdot \frac{(\alpha^n - 1)}{\alpha - 1}.$$
(1)

Для корректного сравнения АЦП с разными системами исчисления необходимо учесть удлинение разрядной сетки, которое определяется выражением $\gamma = ln 2 / ln \alpha$ [3]. Таким образом, общая ёмкость конденсаторной матрицы АЦП с весовой избыточностью,

разрешающая способность которого составляет *n* двоичных разрядов, будет равна

$$C_{\Sigma\alpha} = C_0 \cdot \frac{(\alpha^k - 1)}{(\alpha - 1)},\tag{2}$$

где $k = ceil(n \cdot \frac{ln 2}{ln \alpha})$, а функция ceil(x) определяет результат округления x до первого

большего целого числа, поскольку количество разрядов должно быть целым.

В этом случае коэффициент увеличения емкости матрицы в составе АЦП с весовой избыточностью по сравнению с соответствующей матрицей обычного двоичного преобразователя может быть рассчитан как

$$\phi = \frac{C_{\Sigma\alpha}}{C_{\Sigma2}} = \frac{(\alpha^{k} - 1)}{(2^{n} - 1)(\alpha - 1)}.$$
(3)

Графическая интерпретация последнего выражения для разных значений α и *n* приведена на рис. 1.

Рис. 1. Зависимость коэффициента увеличения суммарной емкости АЦП с ПРЗ от количества разрядов

Анализ последней показывает, что в зависимости от основания системы счисления и количества разрядов суммарная ёмкость матрицы увеличивается от 1,2 до 2,5 раз, причем в общем случае при уменьшении α увеличивается суммарная ёмкость. Таким образом, возникает необходимость в выборе структурной реализации интегральных конденсаторов, обеспечивающей высокую плотность упаковки.

На сегодняшний день для построения конденсаторных матриц в составе АЦП с ПРЗ используются тонкопленочные конденсаторы различных типов. Отличие между ними состоит в материале, который используется для изготовления электродов и слоя диэлектрика. Наибольшую линейность (0,01 %), но и наихудшую плотность упаковки (1 фФ/мкм²) демонстрируют так называемые МІМ-конденсаторы, несколько худшую линейность (0,1 %) при немного большей плотности показывают так называемые poly-to-poly-конденсаторы. Как следует из названия, в первом случае электроды представляют собой тонкие металлические пластинки, а во втором случае – поликремний с соответствующими примесями. Наиболее простой способ изготовления изолятора – это использование оксида кремния (оксидные конденсаторы), однако он имеет малую диэлектрическую постоянную и, как следствие, малую емкость. Для увеличения диэлектрической постоянной используют композитные диэлектрики, в результате чего получают так называемые ONO-конденсаторы (oxide-nitride-oxide). Существуют диэлектрические материалы, которые характеризуются наукові праці ВНТУ, 2009, № 4

диэлектрической проводимостью на уровне нескольких тысяч, однако с экономической точки зрения их использование нецелесообразно.

С точки зрения реализации пленочных конденсаторов их можно поделить на три категории: вертикального типа (электроды размещены один над другим и изолированы слоем диэлектрика,

рис. 2а); горизонтального типа, или латеральные (электроды размещены рядом, рис. 2б) и комбинированного типа (рис. 2в).

Для достижения высокой плотности упаковки конденсаторов вертикального типа используют многослойные структуры (HPP) и минимизируют толщину диэлектрика [4]. Однако плотность упаковки остается относительно небольшой, кроме того для создания многослойных конденсаторов необходимы дополнительные шаги технологического процесса, что в целом увеличивает стоимость устройств.

Рис. 2. Структуры пленочных интегральных конденсаторов: а) вертикального типа; б) горизонтального типа (латеральные); в) комбинированного типа

С развитием технологии изготовления интегральных компонентов, в частности уменьшения минимального расстояния между элементами в одном слое, появилась возможность создавать латеральные конденсаторы, характеризующиеся меньшим расстоянием между электродами по сравнению с вертикальными, где расстояние между электродами определяется толщиной оксида. Как результат: плотность упаковки латеральных конденсаторов в таких условиях будет большей по сравнению с обычными вертикальными. Наиболее известными являются две реализации латеральных конденсаторов – встречно-гребёнчастая [5] структура и фрактальная структура [6].

К преимуществам встречно-гребёнчастой структуры можно отнести простоту реализации по сравнению с фрактальной и относительно несложный расчет общей емкости конденсатора. Кроме того эта структура позволяет получить набор конденсаторов с фиксированным соотношением номиналов, что является крайне важным для АЦП с перераспределением заряда. К недостаткам следует отнести увеличение паразитной индуктивности и уменьшение общей емкости по сравнению с фрактальной.

На сегодняшний день большое распространение получили многослойные варианты латеральных конденсаторов, в частности структура вертикальных параллельных пластин (VPP-структура, рис. 3а) [7] и структура вертикальных столбов (VB-структура, рис. 3б) [7].

Рис. 3. Структуры многослойных латеральных интегральных конденсаторов: а) вертикальных параллельных пластин; б) вертикальных столбов

Черным и белым цветом показаны слои, которые формируют электроды конденсаторов, серым – слой межсоединений. Особенностью структуры вертикальных параллельных пластин является простота расчета суммарной емкости и простота создания массива конденсаторов с согласованными номиналами. Структура вертикальных столбов характеризуется большим значением общей емкости за счет использования электрического поля по двум осям.

В табл. 1 приведены результаты экспериментальных исследований разных параметров 3ьох наиболее распространенных структурных реализаций интегральных конденсаторов номиналами 1 и 10 рФ [7]. Конденсаторы были изготовлены с такими параметрами технологического процесса: минимальная ширина и расстояние между топологическими элементами составляет 0,24 мкм, толщина слоя оксида и металла соответственно составляют t_{ok} =0.7мкм и t_{mer} =0.53 мкм, в качестве диэлектрика использовался оксид кремния, структуры VPP и HPP были реализованы с использованием 5-ти слоев металла, а VBB – 4-ьох.

Таблица 1

Структу ра	Средняя ёмкость С ₀ , пФ	Площадь, мкм ²	Добротность, 1 ГГц	Относительное отклонение $\frac{\sigma_{C}}{C_{0}}$	Ёмкостная плотность, аФ/мкм ²	Коэффициент улучшения	Частота резонанс а, ГГц
VPP	1.01	670	83.2	0.005	1512	7.4	>40
	11.46	7749	26.6	0.006	1480	8.0	11.3
VB	1.07	840	48.7	0.013	1281	6.3	37.1
	10.60	8666	17.8	0.007	1223	6.6	11.1
HPP	1.09	5378	63.8	0.024	203.6	1.0	21
	10.21	55615	23.5	0.0178	183.6	1.0	6.17

Результаты экспериментальных исследований структур интегральных конденсаторов

Анализ таблицы 1 показывает, что для реализации высокоточных конденсаторных матриц латеральные конденсаторы по всем показателям имеют преимущество над традиционными, причем параметры VPP- и VB- структур близки между собой. Необходимо также обратить внимание, что VPP структуры характеризуются максимальной точностью изготовления, которая независимо от емкости интегрального конденсатора составляет приблизительно 0,5%.

Для использования латеральных конденсаторов при построении АЦП с перераспределением заряда рассмотрим методику расчета их ёмкости при условии различных параметров технологического процесса. На рис. 4а показана одна из возможных реализаций VPP-структуры. На рис. 4б и 4в показано, как формируются элементарные конденсаторы. Очевидно, что общая емкость такого конденсатора определяется как сумма номиналов элементарных конденсаторов.

а

Рис. 4. Структура интегрального конденсатора VPP-типа: а) трехмерный вид, б) вид спереди, в) вид сбоку

Общий конденсатор формируется на основе двух типов конденсаторов: $C_{vpp,x}$ и C $_{vpp,z}$. Ёмкость конденсатора C $_{vpp,x}$ может быть рассчитана по формуле:

$$C_{vpp,x} = \varepsilon_{ri} \cdot \varepsilon_0 \cdot \frac{A_y}{s},\tag{4}$$

где ε_{ri} – диэлектрическая постоянная диэлектрика между компонентами *i*-го слоя, ε_0 – диэлектрическая постоянная вакуума, A_y – виртуальная площадь электродов, *s* – расстояние между компонентами *i*-го слоя.

Виртуальная площадь электродов рассчитывается по формуле:

$$A_{v} = (L_{v} + w + \pi \cdot s/2) \cdot (t_{M} + t_{\partial}/2), \qquad (5)$$

Наукові праці ВНТУ, 2009, № 4

5

где L_y – длина компонента, w – ширина компонента, t_M – толщина слоя металла, t_∂ – толщина слоя диэлектрика между соседними слоями металла.

Необходимо обратить внимание, что виртуальная площадь электродов несколько больше реальной. Этот факт объясняется так называемым граничным (fringing) эффектом.

Аналогичным образом рассчитывается емкость С ирр. 2:

$$C_{vpp,z} = \varepsilon_{rij} \cdot \varepsilon_0 \cdot \frac{(L_y + t_\partial/2) \cdot (w + s/2)}{t_\partial}, \tag{6}$$

где ε_{rij} – диэлектрическая постоянная диэлектрика между соседними слоями металла Общую ёмкость конденсатора можно рассчитать с помощью выражения:

$$C_{vpp,3} = r \cdot C_{vpp,x} + l \cdot C_{vpp,z}, \tag{7}$$

где r и l количество конденсаторов $C_{vpp,x}$ и $C_{vpp,z}$ соответственно.

В общем случае последнее выражение приобретает вид:

$$C_{vpp,3} = Int(\frac{L_x - w}{w + s}) \cdot (n - 2) \cdot C_{vpp,x} + (Int(\frac{L_x - w}{w + s}) + 1) \cdot C_{vpp,z},$$
(8)

где Int(a) — целая часть выражения a, L_x — ширина интегрального конденсатора, n — количество слоев металла.

Аналогичным образом можно получить выражение для расчёта Ёмкости интегрального конденсатора VB-структуры, общий вид которого показано на рис. 5а. Общая емкость определяется суммой ёмкостей элементарных конденсаторов трех типов: $C_{vb,x}$, $C_{vb,y}$ и $C_{vb,z}$ (рис. 56 – 5г). Ёмкость каждого из них определяется соответственно выражениями:

$$C_{vb,x} = \varepsilon_{ri} \cdot \varepsilon_0 \cdot \frac{(w_y + s_y/2) \cdot (t_M + t_0/2)}{s_x}, \tag{9}$$

$$C_{vb,y} = \varepsilon_{ri} \cdot \varepsilon_0 \cdot \frac{(w_x + s_x/2) \cdot (t_M + t_0/2)}{s_y}, \tag{10}$$

$$C_{vb,z} = \varepsilon_{rij} \cdot \varepsilon_0 \cdot \frac{(w_y + s_y/2) \cdot (w_x + s_x/2)}{t_0}.$$
 (11)

Металл 2

Рис. 5. Структура интегрального конденсатора VB-типа: а) трехмерный вид, б) вид сверху (слои 1 и 5 не показаны), в) вид спереди, г) вид сбоку

Предполагая, что $w_x = w_y = w$, $s_x = s_y = s$, суммарная ёмкость такого конденсатора будет равна

$$C_{vb,3} = Int(\frac{L_x - w}{w + s}) \cdot (Int(\frac{L_y - w}{w + s}) + 1) \cdot (n - 2) \cdot C_{vb,x} + \dots$$

$$+ Int(\frac{L_y - w}{w + s}) \cdot (Int(\frac{L_x - w}{w + s}) + 1) \cdot (n - 2) \cdot C_{vb,y} + (Int(\frac{L_x - w}{w + s}) + 1) \cdot (Int(\frac{L_y - w}{w + s}) + 1) \cdot C_{vb,z}$$
(12)

На рис. 6 показана зависимость ёмкости интегральных конденсаторов разных типов от количества слоёв металлизации.

Наукові праці ВНТУ, 2009, № 4

Рис. 6. Зависимость ёмкости интегральных конденсаторов разных типов от количества слоёв металлизации

Выводы

В статье рассмотрены современные подходы по реализации интегральных конденсаторных структур с высокой плотностью упаковки и проанализированы преимущества и недостатки каждого из них для реализации конденсаторных матриц в составе АЦП с ПРЗ. Показано, что по совокупности показателей матрицы весового типа при использовании весовой избыточности целесообразно реализовывать в виде многослойных латеральных структур VB- и VPP-типа.

СПИСОК ЛИТЕРАТУРЫ

1. McCreary J. L., Gray P. R. All-MOS charge redistribution analog-to-digital conversion techniques. – Part 1 // IEEE J. Solid-State Circuits. – 1975. – Vol. 10. – P. 371 – 379.

2. Захарченко С. М., Азаров О. Д., Харьков О. М. Самокалібровані АЦП із накопиченням заряду на основі надлишкових позиційних систем числення. – Вінниця: УНІВЕРСУМ – Вінниця, 2005. – 235 с.

3. Азаров О.Д. Основи теорії аналого-цифрового перетворення на основі надлишкових позиційних систем числення. – Вінниця: УНІВЕРСУМ-Вінниця, 2004. – 260 с.

4. J. N. Burghartz. Integrated RF components in a SiGe bipolar technology / J. N. Burghartz, M. Soyuer, K. A. Jenkins, M. Kies, M. Dolan, K. J. Stein, J. Malinowski, D. L. Harame // IEEE Journal of Solid-State Circuits. – September 1997. – vol. 32. – P. 1440 - 1445.

5. Patent 5 208 725 USA, МПК H01J4/10, H01L27/02. High capacitance structures in a semiconductor device. / Akcasu O. E.; – №US005208725А; заявл. 19.08.92; опубл. 04.05.93.

6. H. Samavati, A. Hajimiri, A. R. Shahani, G. N. Nasserbakht, and T. H. Lee, "Fractal capacitors, "IEEE Journal of Solid-State Circuits, vol. 33, pp. 2035 - 2041, December 1998.

7. R. Aparicio and A. Hajimiri, "Capacity limits and matching properties of integrated capacitors, "IEEE Journal of Solid-State Circuits, vol. 37, pp. 384 - 393, March 2002.

Захарченко Сергей Михайлович – к. т. н., доцент кафедры вычислительной техники, тел.: (0432)-598482

Винницкий национальный технический университет.