В. Д. Борисенко, к. т. н., доц.; В. Г. Борисенко

ИССЛЕДОВАНИЯ ЭЛЕКТРОННОЙ СТРУКТУРЫ И ЭЛЕКТРОННЫХ СВОЙСТВ МЕТАЛЛИЧЕСКОГО МОНОСЛОЯ НА ПОВЕРХНОСТИ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА МЕТОДОМ ФОТОЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ С УГЛОВЫМ РАЗРЕШЕНИЕМ

(ОБЗОР ЭКСПЕРИМЕНТАЛЬНЫХ РАБОТ)

Методом фотоэмиссионной спектроскопии с угловым разрешением (ARPES или ФЭСУР) проведено детальное сравнительное исследование ряда YBCO-образцов с разной концентрацией носителей (от 0,05 до 0,25 дырок на элементарную ячейку), легированных кислородом и кальцием. Показано, что фотоэмиссионный спектр имеет, как правило, две составляющие: металлическую и сверхпроводящую, которые представляют, соответственно, сигналы из первого поверхностного двойного CuO₂ слоя и из объёма образца. Путём анализа полученных спектров разделены эти объёмный и поверхностные сигналы и исследованы особенности их электронных свойств.

Ключевые слова: фотоэмиссионная спектроскопия, высокотемпературные сверхпроводники, поверхностный сигнал.

Введение

Фотоэмиссионная спектроскопия значительно влияет на современные исследования электронной структуры твёрдых тел. С помощью углового разрешения можно получить информацию о топологии поверхности Ферми, дисперсию квазичастиц, величину и импульсное распределение энергетических щелей Широкое применение И Т. П. фотоэмиссионная спектроскопия получила высокотемпературных в изучении сверхпроводников, в которых остаётся невыясненным механизм сверхпроводимости. С помощью ФЭСУР был установлен анизотропный характер сверхпроводящих энергетических щелей в купратах, определены доминирующие факторы, влияющие на динамику квазичастиц, детально изучена поверхность Ферми. Большинство исследований проведено на BSCCO-купратах, тогда как не так называемых менее известные YBCO-соединения оставались почти неисследованными из-за существенного вклада поверхностных состояний в фотоэмиссионный сигнал. Таким образом, появляется необходимость в разделении поверхностного и объёмного фотоэмиссионного сигнала в YBCO-соединениях.

Эксперимент

Данные получены с помощью стандартного фотоэлектронного спектрометра с угловым разрешением на основе анализатора SCIENTA SES 100 и высокоинтенсивных источников синхротронного излучения BESSY (Германия) и SLS (Швейцария) [1, 2]. Образцы смонтированы на криоманипуляторе. Атомарно чистая поверхность была получена в ультравысоком вакууме порядка 5[·]10⁻¹¹ мБар путём механического раскола образцов вдоль кристаллографических поверхностей. Все спектры записаны с энергетическим разрешением 12 meV и угловым разрешением 0,2°. Уровень Ферми был прокалиброван по Ферми-краю серебряной поликристаллической плёнки, осаждённой на поверхность манипулятора рядом с измеряемым образцом. Монокристаллы YBCO высокого качества синтезированы путём Наукові праці ВНТУ, 2010, № 2

роста из расплава и насыщены кислородом до необходимой концентрации. На рис. 1 изображена кристаллическая структура YBCO.

В этой статье мы приводим полученные с двух образцов данные: YBa₂Cu₃O_{6.85} с $T_C = 90$ K и YBa₂Cu₃O_{6.4} с $T_C = 35$ K, которые раздвойникованы под воздействием механического напряжения при повышении температуры. Также исследованы несколько кристаллов с двойниками: YBa₂Cu₃O_{6.9} и Y_{1-x}Ca_xBaCu₃O_{7-d}, с x = 0,15 и с $T_C = 90$ и 77 K соответственно.

Результаты эксперимента

На рис. 2 изображена электронная структура раздвойникованного $YBa_2Cu_3O_{6.85}$ с $T_C = 90$ К. Верхняя панель содержит две экспериментальные карты поверхности Ферми (цветовая шкала) измеренных вдоль Г-Х и Г-Y направлений и смоделированную электронную структуру в приближении сильной связи. На панелях (а)–(h) показаны фотоэмиссионные спектры в разных направлениях зоны Бриллюэна, которые обозначены сверху соответствующими буквами.

Аналогичным образом на рис. 3 приведены данные для $YBa_2Cu_3O_{6.4}$ с $T_C = 35$ К. В отличие от предыдущих фотоэмиссионных исследований YBCO [3 - 6], использованы более высокие энергии фотонов (50 – 60 eV по сравнению с 15 – 30 eV), что позволило существенно увеличить интенсивность фотоэлектронов и достигаемую область в импульсном пространстве.

Рис. 1. Кристаллическая структура УВа₂Си₃О_{7-d}

Визуально соответствие между экспериментальной и расчетной [7] электронной структурой кажется полным. Существуют две дырочные поверхности Ферми вокруг S-точек.

Рис. 2. Экспериментальная электронная структура раздвойникованного YBa₂Cu₃O_{6.85}, T_C = 90 K

Верхняя панель содержит две экспериментальные карты поверхностей Ферми (цветовая шкала), измеренных вдоль Г-Х и Г-У направлений, и смоделированную к ним электронную структуру в приближении сильной связи. а – h – фотоэмиссионные спектры в разных направлениях зоны Бриллюэна, обозначенные сверху соответствующими буквами.

Рис. 3. Аналогично рис. 2, экспериментальная электронная структура раздвойникованного YBa₂Cu₃O_{6.4}, *T_C* = 35 К. Все данные получены при T = 30 К. (b) – (h) получены с использованием фотонов c hv = 50 eV и линейной поляризацией, (a) был получен с использованием фотонов c hv = 55 eV

Одномерная структура вдоль $\Gamma - X$ направления является прямым доказательством существования электронных состояний, связанных с цепочками CuO. Также интересно, что, в отличие от Bi₂Sr₂CaCu₂O_{8+d} [8], расщепление зоны проводимости из-за присутствия двух соседних CuO₂ слоев является более изотропным. Таким образом, можно сделать вывод, что найдено полное соответствие электронной структуры YBCO между экспериментом и LDA-расчетом [7] на качественном уровне.

Однако на количественном уровне есть существенное различие, а именно: концентрация носителей (в данном случае дырок), которая пропорциональна площади поверхности Ферми [9] и составляет 0,31. Это существенно превышает величину х = 0,15, которая ожидается для образца с $T_C = 90$ К. Кроме того не наблюдается ожидаемого изменения электронной структуры (открытие сверхпроводящей щели) при понижении температуры ниже T_c . Дальнейшие исследования также выявили необычную структуру, которая появляется в спектрах при низких температурах. На рис. 4а эта структура видна как зона с слабой дисперсией на энергии около 40 meV.

Рис. 4b объясняет эту "необычную" структуру как сильно перенормированную зону, что является следствием как появления сверхпроводящей щели, так и взаимодействия с известным магнитным резонансом [10]. Экспериментальный спектр, показанный на рис. 4a, является суперпозицией сигналов от сверхпроводящей (объёмной) и металлической (поверхностной) составляющих. Самая нижняя картинка на рис. 4b представляет сверхпроводящий спектр, средняя – металлический, верхняя – их суперпозицию.

Механизм возникновения такого двухкомпонентного спектра становится понятным из кристаллической структуры YBCO (рис. 1), которая также показана схематично на рис. 4с. Фотоэмиссионный сигнал является суперпозицией сигнала из первого приповерхностного двойного слоя CuO_2 и более слабого сигнала из объёма образца. Уровень легирования ближайшего к поверхности двойного слоя CuO_2 изменён вследствие разрушения звеньев CuO на поверхности, эти звенья служат зарядовым резервуаром в этих соединениях. Звенья, оставшиеся на поверхности, увеличивают концентрацию дырок в приповерхностном слое CuO_2 , а разрушенные – уменьшают. При этом участки с уменьшенной концентрацией приобретают свойства Мотт-изолятора и не влияют на квазичастичный спектр на поверхности Ферми. Таким образом, наиболее интенсивным является сигнал из чрезмерно легированного (x = 0,31) и соответственно несверхпроводящего приповерхностного двойного слоя CuO_2 , а другая составляющая спектра происходит из объема образца с номинальным уровнем легирования.

Подтверждение этому – температурная зависимость вышеупомянутой "необычной" структуры, которая показана на рис. 5 и полностью соответствует температурной эволюции соответствующего спектра в BSCCO [10]. Изменяя химический состав кристалла, например, путем легирования Са, удается достичь полного подавления поверхностного сигнала (см. рис. 6).

Рис. 4. Сосуществование металлической и сверхпроводящей компонент фотоэмиссионного спектра. (а) – экспериментальный спектр, объединяющий вклады от металлической и сверхпроводящей компонент для YBa₂Cu₃O_{6.85}, k_ν = 0,63 π/b, T = 30 K, hν =55 eV. (b) – схематическое изображение, объясняющее экспериментальный спектр как суперпозицию сигналов от сверхпроводящей (объемной) и металлической (поверхностной) составляющих. Самая нижняя картинка представляет сверхпродящий спектр, средняя – металлический, верхняя – их суперпозицию. (c) – схематическая иллюстрация поверхности монокристалла YBCO. Уровень легирования ближайшего к поверхности двойного слоя CuO₂ изменен вследствие разрушения звеньев CuO на поверхности, которые служат зарядовым резервуаром в этих соединениях

Рис. 5. Температурная зависимость сверхпроводящей составляющей спектра для YBa₂Cu₃O_{6.9} Нижняя панель содержит кривые энергетического распределения интенсивности (EDC), проинтегрированной в узком импульсном диапазоне, показанном на панели "50 K".

Рис. 6. Сверхпроводящая компонента в Y1-хCахВаCu3O7-d, с x = 0.15 и с TC = 77 К. (а) – (d): открытие сверхпроводящей щели и увеличение перенормировки при приближении к антинодальной области. (f) – (i): эволюция спектра и сверхпроводящей щели с увеличением температуры

Выводы

1. Фотоэмиссионные спектры YBa₂Cu₃O_{7-d} имеют, как правило, две составляющие: металлическую и сверхпроводящую, которые представляют сигналы из первого поверхностного двойного CuO₂ слоя и из объема образца соответственно.

2. Поверхностный CuO₂ двойной слой оказывается чрезмерно легированным с концентрацией носителей около 0,3 дырки на элементарную ячейку, которая почти не зависит от стехиометрии объема образца.

3. В объеме YBCO-образцов в сверхпроводящем состоянии квазичастичный спектр перенормирован открытием сверхпроводящей щели с d-волновой симметрией.

4. Как и в случае с $Bi_2Sr_2CaCu_2O_{8+d}$ электронная структура в объеме YBCO обнаруживает сильно анизотропную перенормировку, которая максимальна в антинодальных областях и пропадает выше Tc, что подтверждает универсальность вывода о магнитном происхождении анизотропной перенормировки в ВTCП.

СПИСОК ЛИТЕРАТУРЫ

1. Zabolotnyy V. B. Momentum and temperature dependence of renormalization effects in the high-temperature superconductor Yba2Cu3O7?d / V. B. Zabolotnyy, S. V. Borisenko, A. A. Kordyuk et al. // Phys. Rev. -2007. -B76. -P. 064519 (1-5).

2. Kordyuk A. A. Constituents of the quasiparticle spectrum along the nodal direction of high-Tc cuprates / A. A. Kordyuk, S. V. Borisenko, V. B. Zabolotnyy et al. // Phys. Rev. – 2006. – Lett. 97. – P. 017002 (1 – 4).

3. Gofron K. Occurrence of van Hove singularities in YBa2Cu4O8 and YBa2Cu3O6.9 / K. Gofron, J. C. Campuzano, H. Ding et al. // J. Phys. – 1993. – Chem. Solids. 54. – P. 1193 – 1198.

4. Schabel M. C. Angle-resolved photoemission on untwinned YBa2Cu3O6.95. I. Electronic structure and dispersion relations of surface and bulk bands / M. C. Schabel, C.-H. Park, A. Matsuura, Z.-X. Shen, D. A. Bonn // Phys. Rev. – 1998. – B 57. – P. 6090 (1 – 4).

5. Schabel M. C. Angle-resolved photoemission on untwinned YBa2Cu3O6.95. II. Determination of Fermi surfaces / M. C. Schabel, C.-H. Park, A. Matsuura, Z.-X. Shen, D. A. Bonn, Ruixing Liang, and W. N. Hardy // Phys. Rev – 1998. – B 57. – P. 6107 (1 – 6).

6. Lu D. H. Superconducting Gap and Strong In-Plane Anisotropy in Untwinned Yba2Cu3O7-d / D. H. Lu, D. L. Feng, N. P. Armitage, K. M. Shen, A. Damascelli, C. Kim, F. Ronning, Z.-X. Shen, D. A. Bonn, R. Liang, W. N. Hardy, A. I. Rykov, and S. Tajima // Phys. Rev. – 2001. – Lett. 86. – P. 4370 (1 – 5).

7. Andersen O. K. LDA energy bands, low-energy hamiltonians, t', t_p, t (k), and J / O. K. Andersen, A. I.

Наукові праці ВНТУ, 2010, № 2

Lichtenstein, O. Jepsen, and F. Paulsen // J. Phys. - 1995. - Chem. Solids. 56. - P. 1573 - 1578.

8. Kordyuk A. A. Evidence for CuO conducting band splitting in the nodal direction of Bi2Sr2CaCu2O8+d / A. A. Kordyuk, S. V. Borisenko, A. N. Yaresko et al. // Phys. Rev. -2004. -B. 70. -P. 214525 (1-5).

9. Luttinger J. M. Fermi Surface and Some Simple Equilibrium Properties of a System of Interacting Fermions / J. M. Luttinger // Phys. Rev. – 1960. – 119. – P. 1153 (1 – 4).

10. Borisenko S. V. Anomalous Enhancement of the Coupling to the Magnetic Resonance Mode in Underdoped Pb-Bi2212 / S. V. Borisenko, A. A. Kordyuk, T. K. Kim, A. Koitzsch, M. Knupfer, M. S. Golden, J. Fink, M. Eschrig, H. Berger, and R. Follath // Phys. Rev. – 2003. – Lett. 90. – P. 207001 (1 – 6).

Борисенко Владимир Данилович – к. т. н., доцент кафедры физики и фотоники, тел. дом.: 466054, e-mail: vdbor@svitonline.com.

Борисенко Виктория Геннадиевна – магистрант, КНЭУ им. В. Гетьмана, тел. дом.: 463656.