УДК 621.374

Л. Б. Лищинская, к. т. н., доц.; Я. С. Рожкова; Н. А. Филинюк, д. т. н., проф. АНАЛИЗ «КАЧЕСТВА» ОДНОКРИСТАЛЬНЫХ КОНВЕРТОРОВ ИММИТАНСА

В статье разработаны математические модели ОПИ, которые учитывают зависимости их преобразованных иммитансов от физических параметров транзисторов, а также проведено исследование зависимостей качества $S^{Tk}_{\ \alpha i}$ от физических параметров вышеобозначенных транзисторов.

Ключевые слова: обобщённый преобразователь иммитанса, однопереходной транзистор, биполярный транзистор, полевой транзистор, коэффициент чувствительности, качество.

Введение

Одним из требований, которые выдвигаются к обобщенным преобразователям иммитанса (ОПИ), является стабильность коэффициента преобразования. Нестабильность этого коэффициента принято характеризовать чувствительностью к изменению параметров ОПИ, которая получила название "качество" ОПИ [1]. Чем меньше чувствительность ОПИ, тем выше его качество.

Постановка задач исследований

С целью определения зависимости качества ОПИ от физических параметров однопереходного (ОТ), биполярного (БТ) и полевого (ПТ) транзисторов, которые обеспечивают возможность управления качеством S^{Tk}_{ai} с помощью изменения физических параметров и схем включения. При этом необходимо решить такие задачи:

 – разработать математические модели конверторов иммитанса на базе ОТ, БТ и ПТ, которые учитывают зависимость их преобразованных иммитансов от физических параметров транзисторов;

– провести исследование зависимостей качества *S*^{*Tk*}_{*ai*} от физических параметров транзисторов для реального и идеального конвертора иммитанса.

Разработка математических моделей

Рассмотрим три вида конверторов, основанных на базе однопереходного транзистора, включенного по схеме с общей базой 1 (δI), биполярного транзистора, включенного по схеме с общим коллектором (κ) и на базе полевого транзистора, включенного по схеме с общим стоком (c).

Для построения математических моделей таких конверторов, которые учитывают физические параметры транзисторов, используем их физические эквивалентные схемы [2-4].

Рис. 1. Эквивалентные схемы однокристальных конверторов на базе: а) ОТ; б) БТ; в) ПТ

На схеме (рис. 1 а): β – коэффициент передачи ОТ по току; $Z_{\delta l}$, $R_{\delta 2}$ – сопротивление Наукові праці ВНТУ, 2010, № 3

базы 1 и базы 2; С_э и R_э – барьерная емкость и дифференциальное сопротивление эмиттерного перехода. На схеме (рис. 1 б): α – коэффициент передачи БТ по току; r_{δ} – омическое сопротивление базы, Z₃ – полное сопротивление эмиттерного перехода, который определяется как $Z_3 = r_3 / (1 + j\omega r_3 C_3); Z_a = 1 / j\omega C_{kl}, Z_n = 1 / j\omega C_{k2}, где C_{kl}$ и C_{k2} – активная и пассивная емкости коллекторного перехода. На схеме (рис. 1 в): Z_{3u}, Z_{3c} и Z_{cu} – комплексные сопротивления затвор-исток, затвор-сток и сток-исток ПТ соответственно; s – крутизна ПТ.

Физические эквивалентные схемы получены без учета паразитных элементов, корпуса и выводов, так как исследования проводятся на относительно невысоких частотах. Параметры физических эквивалентных схем определённые по методике, описанной в [5].

Для упрощения расчетов сделаем определенные предположения, а именно: в однопереходном транзисторе при больших токах сопротивление эмиттера $R_{2} \rightarrow 0$, а $Z_{\delta l} = 1/j\omega C_{\delta l}$.

С учетом этих допущений, получим математические выражения для У-параметров трёх физических эквивалентных схем ОПИ.

Матрица проводимости схемы (рис. 1 а) будет выглядеть:

$$[Y_{\delta 1}] = \begin{bmatrix} \frac{R_{\delta 2} + Z_{\delta 1}}{R_{\delta 2} \cdot (1 - \beta) + Z_{\delta 1}} & \frac{-1}{R_{\delta 2} \cdot (1 - \beta)} \\ \frac{-1}{R_{\delta 2}} & \frac{1}{R_{\delta 2}} \end{bmatrix}.$$
 (1)

Матрица проводимости схемы (рис. 1 б) будет выглядеть:

$$[Y_{\kappa}] = \begin{bmatrix} \frac{Z_{\mathfrak{g}} + Z_{a} \cdot (1 - \alpha)}{Z_{\mathfrak{g}} \cdot r_{\delta} + Z_{a} \cdot [r_{\mathfrak{g}} + r_{\delta} \cdot (1 - \alpha)]} & -\frac{Z_{\mathfrak{g}}}{Z_{\mathfrak{g}} \cdot r_{\delta} + Z_{a} \cdot [r_{\mathfrak{g}} + r_{\delta} \cdot (1 - \alpha)]} \\ \frac{Z_{\mathfrak{g}}}{Z_{\mathfrak{g}} \cdot r_{\delta} + Z_{a} \cdot [r_{\mathfrak{g}} + r_{\delta} \cdot (1 - \alpha)]} & \frac{r_{\delta} + Z_{a}}{Z_{\mathfrak{g}} \cdot r_{\delta} + Z_{a} \cdot [r_{\mathfrak{g}} + r_{\delta} \cdot (1 - \alpha)]} \end{bmatrix}.$$
(2)

Матрица проводимости схемы (рис. 1 в) будет выглядеть:

$$[Y_{c}] = \begin{bmatrix} \frac{\Omega_{s} \cdot (\Omega_{s} + j)}{R_{e}} & -\frac{\Omega_{s} \cdot (\Omega_{s} + j)}{R_{e}} \\ -\frac{\Omega_{s} + s \cdot R_{s} + j\Omega_{s} \cdot (1 - sR_{s})}{R_{s}} & \frac{\Omega_{s} + s \cdot R_{s} + j\Omega_{s} \cdot (1 - sR_{s})}{R_{s}} \end{bmatrix},$$
(3)

где $\Omega_s = \frac{\omega}{\omega_s}$, $\omega_s = \frac{1}{R_s C_{su}}$; R_s – сопротивление истока, C_{su} – ёмкость затвор-исток;

$$\dot{\alpha} = \frac{\alpha_0}{1+j\Omega_T}, \ \dot{\beta} = \frac{\beta_0}{1+j\Omega_\beta}, \ \dot{s} = \frac{s_0}{1+j\Omega_s}.$$

Входящая и исходящая преобразованные проводимости рассматриваемых схем, равны [6]:

$$Y_{_{6X_{.}}} = Y_{_{11}} - Y_{_{12}} \cdot Y_{_{21}} / (Y_{_{22}} + Y_{_{_{H}}}),$$
(4)

$$Y_{ucx} = Y_{22} - Y_{12} \cdot Y_{21} / (Y_{11} + Y_{e}).$$
(5)

где Y_{H} и Y_{2} – преобразуемые проводимости.

Системы уравнений образуют математические модели однокристальных ОПИ и позволяют провести исследование зависимостей качества от основных параметров физических эквивалентных схем ОТ, БТ и ПТ.

Для определения качества однокристальных конверторов иммитанса на основе (1) – (3) находим коэффициент конверсии иммитанса Тк. Для всех случаев при идеальном ОПИ прямой $T_{\kappa \mu}$ и обратный $T'_{\kappa \mu}$ коэффициенты конверсии будут описываться Наукові праці ВНТУ, 2010, № 3 2 выражениями [7]:

$$T_{\kappa,i} = \frac{Y_{11}}{Y_{22}}, \quad T'_{\kappa,i} = \frac{Y_{22}}{Y_{11}}.$$
 (6)

При реальном ОПИ прямой $T_{\kappa,p}$ и обратный $T'_{\kappa,p}$ коэффициенты конверсии с учётом (4) и (5) будут равны:

$$T_{\kappa,p} = \frac{Y_{sx.}}{Y_{\mu}}, \quad T'_{\kappa,p} = \frac{Y_{ucx.}}{Y_{e}}.$$
(7)

Используя (6) и (7) находим аналитические выражения для качества однокристальных преобразователей иммитанса при прямом и обратном преобразовании:

$$S_{\alpha_i}^{T_{\kappa}} = \frac{\partial T_{\kappa}}{\partial \alpha_i} \cdot \frac{\alpha_i}{T_{\kappa}}, S_{\alpha_i}^{T'_{\kappa}} = \frac{\partial T'_{\kappa}}{\partial \alpha_i} \cdot \frac{\alpha_i}{T'_{\kappa}}, \tag{8}$$

где *α_i* – выбранный физический параметр транзистора.

Результаты исследования

Зависимости коэффициентов качества от параметров физических эквивалентных схем вышеобозначенных ОПИ рассматривались для двух случаев: идеального и реального конверторов.

Для идеального конвертора зависимости чувствительности прямого $T_{\kappa,u}$ и обратного $T'_{\kappa,u}$ коэффициентов конверсии от основных физических параметров эквивалентной схемы ОТ представлены на рис. 2 и 3.

Зависимость реальной части качества от сопротивления базы 2 (R_{62}) носит нарастающий характер, а мнимой части – нисходящий характер, но влияние изменения R_{62} является незначительным. Увеличение коэффициента передачи транзистора по току β_0 приводит к росту реальной части чувствительности, а следовательно падение качества конвертора (рис. 26), причем увеличение приведенной частоты Ω уменьшает $S_{\beta 0}^{Tk}$. Из графика мнимой части зависимости можно сделать вывод, что ни изменение коэффициента передачи транзистора по току β_0 , ни изменение приведенной частоты Ω не влияют на качество. Зависимости чувствительности от сопротивления (R_{61}) и емкости (C_{61}) базы 1 являются настолько незначительными ($10^{-14} - 10^{-15}$), что ими можно пренебречь.

Рис. 2. Зависимость чувствительности для прямого коэффициента преобразования $T_{\kappa .u}$ для идеального ОПИ на базе ОТ при разной приведённой частоте $\Omega = f/f_T$ от сопротивления базы 2 $R_{\delta 2}$ (a); коэффициента передачи транзистора по току β_0 (б)

Рис. 3. Зависимость чувствительности для обратного коэффициента преобразования $T_{\kappa u}$ для идеального ОПИ на базе ОТ при разной приведённой частоте $\Omega = f/f_T$ от сопротивления базы 2 R_{62} (a); коэффициента передачи транзистора по току β_0 (б)

Качество для выбранного коэффициента конверсии зависит от изменения сопротивления R_{62} в незначительной мере (рис. 3а), причем изменение приведенной частоты практически не влияет на качество. Как реальная, так и мнимая часть зависимости качества от β_0 имеют нисходящий характер, при этом располагаются в разных четвертях: реальная часть имеет отрицательные значения чувствительности, а мнимая – положительные.

Анализ зависимостей качества для прямой и обратной конверсии для идеального конвертора от основных физических параметров схемы биполярного транзистора, представленный на рисунках. 4 и 5. Реальная часть чувствительности существенно растет, уменьшая качество конвертора, (рис. 4а) как с увеличением сопротивления базы r_{δ} , так и с увеличением приведенной частоты Ω . Мнимая же часть носит противоположный характер и является отрицательность (как для реальной, так и для мнимой части), но рост

приведенной частоты приводит к уменьшению качества для реальной части, и ее увеличения для мнимой (рис. 4 б).

Рис. 4. Зависимость качества прямого преобразования идеального ОПИ на базе БТ при приведённой частоте $\Omega = f/f_T$ от сопротивления базы r_{δ} (а); ёмкости коллектора C_{κ} (б); сопротивления эмиттера r_e (в); коэффициента передачи транзистора по току a_0 (г)

Увеличение сопротивления эмиттера r_e и приведенной частоты положительно влияет на изменение качества (рис. 4в). Зависимости имеют одинаковые числовые пределы, но

характер графиков свидетельствует о разных знаках первых производных. Изменение в сторону увеличения коэффициента передачи БТ по току уменьшает значение чувствительности, увеличивая качество (рис. 4г); реальная часть графика этих зависимостей является сугубо отрицательной. Мнимая часть носит смешанный характер: до $\alpha_0 = 0,038$ качество является отрицательным, а после этого значения – положительным. При значении $\alpha_0 = 0,05$ наблюдается пик роста $S_{\alpha 0}^{Tk.u}$, дальнейшее увеличение коэффициента передачи, как и изменение приведенной частоты, не влияет на изменение качества.

При обратном превращении чувствительности коэффициента конверсии $T'_{\kappa,u}$ реальная часть зависимости качества от сопротивления базы r_{δ} (рис. 5а) растет и лежит в области положительных значений, а влияние приведенной частоты Ω является таким же, как и при прямом коэффициенте конверсии. Зависимость в мнимой части носит нисходящий характер, имеет отрицательные значения и уменьшается.

Рис. 5. Зависимость качества обратного преобразования идеального ОПИ на базе БТ при приведённой частоте $\Omega = f/f_T$ от сопротивления базы $r_{\phi}(a)$; ёмкости коллектора $C_{\kappa}(b)$; сопротивления эмиттера $r_{\phi}(b)$; коэффициента передачи транзистора по току a_0 (г)

Для полевого транзистора при прямом и обратном преобразовании, зависимости чувствительности от основных его физических параметров является незначительными $(10^{-14} - 10^{-15}).$

Следующим шагом исследования было выявление тех же зависимостей, но уже для реального конвертора. Рассмотрим их при прямом и обратном преобразовании для ОТ. Результаты численных расчетов чувствительности S_{ai}^{Tk} представлены на рисунках 6 и 7.

Рис. 6. Зависимость чувствительности для прямого коэффициента преобразования Т_{кі} для реального ОПИ на базе ОТ при разной приведённой частоте $\Omega = f/f_T$ от сопротивления базы 2 R_{62} (a); коэффициента передачи транзистора по току β_0 (б)

Сопротивление базы 2 R₆₂ при росте уменьшает значение качества конвертора (рис. 6 а), для реальной и увеличивает для мнимой части, имеет одинаковые числовые Наукові праці ВНТУ, 2010, № 3

пределы и не поддается влиянию изменения приведенной частоты. Коэффициент передачи транзистора по току (рис. 6 б) в случае реального конвертора имеет такое же влияние на качество, как и при идеальном конверторе.

Рис. 7. Зависимость чувствительности для обратного коэффициента преобразования $T_{\kappa,i}$ для реального ОПИ на базе ОТ при разной приведённой частоте $\Omega = f/f_T$ от сопротивления базы 2 R_{62} (a); коэффициента передачи транзистора по току β_0 (б)

Неоднозначная картина наблюдается для обратного коэффициента конверсии T'_{κ} : числовые значения $S_{R\delta 2}^{R\delta 2}$ являются отрицательными (рис. 7 а), и уменьшаются с ростом сопротивления базы 2 $R_{\delta 2}$. Коэффициент передачи транзистора по току β_0 (рис. 7 б) не влияет на размер реальной части качества конвертора, и уменьшает чувствительность в его мнимой части.

Зависимости качества при прямом и обратном преобразовании для реального конвертора на базе БТ представлены на рисунках 8 и 9. График дает основания утверждать, что влияние r_{δ} на качество БТ носит неоднозначный характер (рис. 8 а): на реальной части наблюдается пик роста при $r_{\delta} = 0,5 - 1,66$ Ом, после чего увеличение r_{δ} уменьшает чувствительность, причем после значения $r_{\delta} = 3,33 - 4$ Ом коэффициент приобретает отрицательные значения. Емкость коллектора C_{κ} (рис. 9 б) при ее росте негативно влияет на качество. Но на мнимой части при увеличении приведенной частоты до $\Omega = 0,6$ наблюдается уменьшение $S_{C\kappa}^{Tk}$ и он становится отрицательные числовые значения сопротивления эмиттера реальная часть качества имеет отрицательные числовые значения (рис. 8 в) и носит нисходящий характер. Мнимая часть также спадает, но к значению $r_e = 2 - 4,5$ Ом (в зависимости от размера Ω) качество имеет позитивные значения, а в следующем – негативные. Чувствительность при увеличении α_0 на реальной части графика (рис. 8 г) имеет нисходящий характер, а на мнимой – растущий. Увеличение приведенной частоты больше значения $\Omega=0,4$ не влияет на качество.

Рис. 8. Зависимость коэффициента чувствительности при прямом преобразовании для реального ОПИ на базе БТ при разной приведённой частоте от сопротивления базы *r*_δ (a); ёмкости коллектора *C*_κ (б); сопротивления эмиттера *r*₃ (в); коэффициента передачи транзистора по току α₀ (г)

Рис. 9. Зависимость коэффициента чувствительности при обратном преобразовании для реального ОПИ на базе БТ при разной приведённой частоте от: сопротивления базы r_{δ} (a); ёмкости коллектора C_{κ} (б); сопротивления эмиттера r_{3} (в); коэффициента передачи транзистора по току α_{0} (г)

Анализ графиков зависимости качества от r_{δ} , C_{κ} и r_{3} (рис. 9 а, б, в) показывает, что реальная часть S_{ai}^{Tk} уменьшается с увеличением этих параметров, его числовые значения являются отрицательными и спадают с увеличением приведенной частоты. Рост коэффициента передачи по току, как видно из графика реальной части (рис. 9 г), существенно увеличивает чувствительность конвертора, уменьшая его качество, что негативно влияет на его работу, причем она вообще не зависит от размера приведенной частоты. На графике мнимой части наблюдается 2 экстремума – минимум ($S_{a0}^{Tk} = -3,19$) при значении $\alpha_0 = 0,09$ и максимум ($S_{a0}^{Tk} = 10,4$) при $\alpha_0 = 0,13$. Увеличение значения $\alpha_0 > 0,33$ не влияет на качество. Зависимости чувствительности S_{ai}^{Tk} при прямом и обратном преобразовании для реального конвертора от основных физических параметров схемы ПТ является близкими к нулю (10^{-15}).

В таблице 1 приведены числовые значения коэффициента чувствительности для всех Наукові праці ВНТУ, 2010, № 3 10

вышерассмотренных случаев.

Таблица 1

Режим прямой конверсии					
OT		БТ		ПТ	
Идеальный	Реальный	Идеальный	Реальный	Идеальный	Реальный
		$S_{B}^{Re Tk} = 0.013$ $S_{B}^{Im Tk} = -0.0081$	$S^{Re Tk}_{Rb}$ =-0,019 $S^{Im Tk}_{Rb}$ =-0,36	$S_{Ri}^{Re Tk} = -2$ $S_{Ri}^{Im Tk} = -1$	$S_{Ri}^{Re Tk} = -2$ $S_{Ri}^{Im Tk} = -1$
S ^{Im Tk} _{Rb2} =1	$S^{\text{Re Tk}}_{Rb2}$ =-0,0005 $S^{\text{Im Tk}}_{Rb2}$ =-0,0005	$S^{\text{Re Tk}}_{Ck} = 0.016$ $S^{\text{Im Tk}}_{Ck} = 0.038$	$S^{\text{Re Tk}}_{Ck} = 0.024$ $S^{\text{Im Tk}}_{Ck} = 0.032$	$S^{\text{Re Tk}}_{\text{omegas}} = -2$ $S^{\text{Im Tk}}_{\text{omegasi}} = -1$	$S_{Ci}^{\text{Re Tk}} = -2$ $S_{Ci}^{\text{Im Tk}} = -1$
	S ^{Im Tk} _{Cb1} =-2,294	$S^{\text{Re Tk}}_{\text{Rem}} = 0.0044$ $S^{\text{Im Tk}}_{\text{Rem}} = 0.046$	$S^{\text{Re Tk}}_{\text{Rem}} = -0.98$ $S^{\text{Im Tk}}_{\text{Rem}} = -0.57$	$S^{\text{Re Tk}}_{s0} = -2$ $S^{\text{Im Tk}}_{s0} = -1$	$S^{\text{Re Tk}}_{s0} = -2$ $S^{\text{Im Tk}}_{s0} = -1$
$S^{\text{Re Tk}}_{\beta 0} = 1.93$ $S^{\text{Im Tk}}_{\beta 0} = -0.37$		$S^{\text{Re Tk}}_{a0} = -18.42$ $S^{\text{Im Tk}}_{a0} = 1,013$	$S^{\text{Re Tk}}_{a0} = -7.514$ $S^{\text{Im Tk}}_{a0} = 2.943$		
Режим обратной конверсии					
ОТ		БТ		ПТ	
Идеальный	Реальный	Идеальный	Реальный	Идеальный	Реальный
		$S^{\text{Re Tk}}_{\text{Rb}} = 0.014$ $S^{\text{Im Tk}}_{\text{Rb}} = -0.008$	$S_{Rb}^{Re Tk} = -0.206$ $S_{Rb}^{Im Tk} = 0.794$	$S^{Im Tk}_{Ri} = 1$	$S^{Im Tk}_{Ri} = 1$
$S^{\text{Re Tk}}_{\text{Rb2}} = -1$ $S^{\text{Im Tk}}_{\text{Rb2}} = -1$	$S_{Rb2}^{Re Tk} = -0,99 S_{Rb2}^{Im} = -0,99 S_{Rb2}^{Im}$	$S^{\text{Re Tk}}_{Ck}$ =-0.043 $S^{\text{Im Tk}}_{Ck}$ = -0.022	$S_{Ck}^{Re Tk} = -0,003$ $S_{Ck}^{Im Tk} = 0,034$	$S^{Im Tk}_{omegas} = 1$	S ^{Im Tk} omegas=1
		$S^{\text{Re Tk}}_{\text{Rem}} = -0.057$ $S^{\text{Im Tk}}_{\text{Rem}} = -0.016$	$S^{Re Tk}_{Rem} = -0.79$ $S^{Im Tk}_{Rem} = -1.96$	$S^{\text{Re Tk}}_{S0} = 0$ $S^{\text{Im Tk}}_{S0} = 1$	$S^{\text{Re Tk}}_{s0} = 0$ $S^{\text{Im Tk}}_{s0} = 1$
		$S_{a0}^{Re Tk} = -17,732$ $S_{a0}^{Im Tk} = 1,629$	$S_{a0}^{Re Tk} = 0.983$ $S_{a0}^{Im Tk} = 3.1$		

Значение качества от разных параметров физической структуры конверторов иммитанса на частоте Ω =0,2

Наименьшая чувствительность, а следовательно и наибольшее качество, наблюдается для идеального конвертора на базе БТ, включенного по схеме с общим коллектором как при прямой ($S_{\alpha 0}^{Tk} = -18,43$), так и при обратной ($S_{\alpha 0}^{Tk} = -17,732$) конверсии. Наименьшее качество наблюдается для идеального конвертора на базе ВОТ, включенного по схеме с общей базой 1 для прямой конверсии T_{κ} ($S_{\beta 0}^{Tk} = 1,93$) и для обоих видов конверторов на базе ПТ, включенного по схеме с общим стоком как для прямой так и обратной конверсии по всем параметрам $S_{ai}^{Tk} = 1$.

Выводы

Для идеального конвертора на базе ОТ наименьшее качество ($S_{R62}^{Tk} = -1$) наблюдается при обратной конверсии при включении по схеме с общей базой 1. Для реального конвертора на базе ОТ наименьшим является качество ($S_{R62}^{Tk} = -0,99$) при обратном коэффициенте конверсии. Следовательно, увеличивая значение параметра сопротивления базы 2 (R_{62}), можно увеличивать качество однокристального конвертора на базе ОТ.

Для идеального конвертора на базе БТ наименьшая чувствительность наблюдается как при прямой ($S_{a0}^{Tk} = -18,43$), так и при обратной ($S_{a0}^{Tk} = -17,732$) конверсии, при включении по схеме с общим коллектором. Для реального конвертора на базе БТ качество является наибольшим ($S_{a0}^{Tk} = -0,98$) при прямой конверсии. Увеличивая значение коэффициента передачи транзистора по току α_0 , можно увеличивать качество однокристального конвертора на базе БТ.

Как для идеального, так и для реального конвертора на базе ПТ наименьшая чувствительность ($S_{\alpha i}^{Tk} = -2$) наблюдается при прямой конверсии по всем параметрам при включении по схеме

СПИСОК ЛІТЕРАТУРИ

1. Филановский Н. М. Схемы с преобразователями сопротивления / Н. М. Филановский, А. Ю. Персианов, В. К. Рыбин– Л.: Энергия, 1973, – 192 с.

2. Узагальнені перетворювачі іммітансу на основі інжекційно-пролітної транзисторної структури із загальним витоком [Електронний ресурс] / Ліщинська Л. Б., Булига Н. В., Шведюк А. Г., Філинюк М. А. // Наукові праці Вінницького національного технічного університету. – №2: 2008, Режим доступу до журн.: http://www.nbuv.gov.ua/e-journals/VNTU/2008-2/2008-2.files/uk/08lblsts_uk.pdf

3. Радзевич В. Д. Проектирование СВЧ устройств с помощью Microwave office / В. Д. Радзевич, Ю. В. Потапов, А. А. Кукушин; под ред. В. Д. Радзевича. – М.: САЛОН- Пресс, 2003, – 496 с.

4. Філинюк М. А. Інформаційні пристрої на основі потенційно-нестійких структур Шотткі. / М. А. Філинюк, О. М. Куземко, Л. Б. Ліщинська – Вінниця, ВНТУ, 2009, – 274 с.

5. Філинюк М. А. Метрологічні основи негатроніки / М. А. Філинюк, Д. В. Гаврілов – Вінниця: УНІВЕРСУМ – Вінниця, 2006, – 188 с.

6. Сигорский В. П. Алгоритмы анализа электронных схем / В. П. Сигорский, А. И. Петренко – М.: Советское радио, 1976, – 608 с.

7. Філинюк М. А. Основи негатроніки. Том І. Теоретичні і фізичні основи негатроніки / М. А. Філинюк – Вінниця: УНІВЕРСУМ – Вінниця, 2009, – 274 с.

Лищинская Людмила Брониславовна – кандидат технических наук, доцент кафедры финансового контроля и анализа e-mail: L_Fil@mail.ru.

Винницкий торгово-экономический институт.

Рожкова Яна Сергеевна – студентка кафедры проектирования компьютерной и телекоммуникационной аппаратуры, rozhkova.yana@gmail.com.

Филинюк Николай Антонович – доктор технических наук, профессор, e-mail: Filinyuk@vstu.vinnica.ua.

Винницкий национальный технический университет.