О. Н. Кузьменко

ОЦЕНКА КАЧЕСТВА ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ МИКРОВОЛНОВЫХ УСТРОЙСТВ ПО ОТНОШЕНИЮ К СОПРОТИВЛЕНИЯМ ВКЛЮЧЕНИЯ

В статье проиллюстрировано определение качества имитационного моделирования с точки зрения надежности, валидности и адекватности полученных результатов с целью определения возможности уверенного использования предложенной методики имитационного моделирования при проектировании устройств микроволнового диапазона.

Ключевые слова: имитационное моделирование, микроволновое устройство, функциональная характеристика, надежность, адекватность, валидность.

Введение

Сложность оценивания качества имитационного моделирования (ИМ) микроволновых устройств (МУ) [1-3] относительно параметров включения заключается в невозможности в общем случае подтвердить полученные в терминах матрицы рассеяния результаты непосредственными экспериментальными исследованиями, которые являются возможными лишь при исследовании МУ с использованием в качестве нагрузок, подключенных к их входам / выходам, стандартизированных трактов [4]. В то же время определение уровня качества результатов ИМ (а следовательно, и соответствующих математических моделей, на основании которых это моделирование осуществляется) имеет существенное значение для уверенного и эффективного их использования в практической деятельности относительно реализации как МУ, так и радиоэлектронных систем (РЭС), в которых такие устройства используют.

- В общем случае ИМ должно соответствовать определенным требованиям, которые целесообразно разделить на три группы, характеризующие надежность, валидность и адекватность полученных на основании ИМ результатов:
- надежность ИМ характеризует степень доверия к полученным результатам с точки зрения возможности их воспроизведения при заданных условиях с заданной точностью при определенной вероятности;
- валидность ИМ характеризует степень уверенности в том, что полученные результаты отражают именно те закономерности, которые являются предметом исследования, то есть указывают на зависимость функциональных характеристик (Φ X) МУ именно от параметров включения;
- адекватность ИМ характеризует соответствие полученных результатов реальным процессам и зависимостям, проявляющимся при включении МУ в реальный тракт (т. е. соответствие результатов ИМ практике).

Разделение задачи оценивания качества ИМ на три указанные составляющие не противоречит основным принципам реализации процесса ИМ и в тоже время позволяет рассматривать каждую из этих составляющих отдельно.

Надежность результатов имитационного моделирования

Категория надежности результатов ИМ определяет степень доверия к полученным статистическим показателям (математическому ожиданию, дисперсии, среднеквадратическому отклонению и т. п.) ФХ исследуемого МУ. Решение этой задачи связано с реализацией известных [5] алгоритмов определения доверительных интервалов

для статистических показателей, отобранных для отображения результатов ИМ.

Полученные результаты ИМ показывают, что статистические показатели и их доверительные интервалы зависят не только от количества реализаций численного эксперимента, но и от значений ФХ МУ. Причем чем шире интервал изменения значений ФХ, тем большую вариативность испытывают соответствующие доверительные интервалы. Как показывают расчеты, например, при ИМ частотного фильтра, параметры ФХ (амплитудно-частотных характеристик) которого меняются в широких пределах, получение приемлемого значения доверительного интервала при разных значениях частоты требует существенно отличающегося (в десятки раз) количества реализаций соответствующего численного эксперимента.

На рис. 1 как пример приведены зависимости доверительного интервала математического ожидания M[L] величины L от количества реализаций K численного эксперимента при различных первоначальных значениях L (то есть тех значениях, которые имеют место при подключении к МУ согласованных нагрузок). При этом (как и в последующих расчетах) доверительная вероятность принята равной 0.95.

Из рис. 2 видно, что увеличение количества численных экспериментов, конечно, уменьшает величину доверительного интервала, но на эту величину существенно влияет и первоначальное значение L. Причем доверительный интервал меньше при больших первоначальных значениях L. Отметим, что при K>60 уменьшение доверительного интервала практически прекращается.

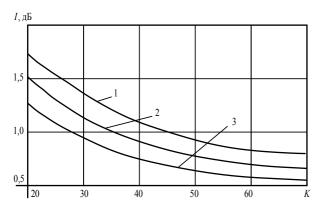


Рис. 1. Зависимость доверительного интервала математического ожидания величины L от количества реализаций численного эксперимента при первоначальных значениях L=0 дБ (кривая 1); L=3 дБ (кривая 2);

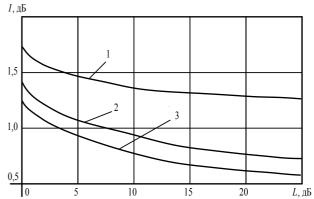


Рис. 2. Зависимость доверительного интервала математического ожидания величины L от первоначальных значений этой величины при количестве реализаций численного эксперимента 20 (кривая 1), 30 (кривая 2) и 40 (кривая

3)(
$$K_{U \max 1} = K_{U \max 2} = 2$$
 при $-\pi/2 \le \psi_i \le \pi/2; i = 1,2$)

Численные расчеты показывают аналогичные зависимости и по отношению к величине доверительного интервала среднеквадратичного отклонения коэффициента передачи четырехполюсника.

Отметим, что приведенное остается справедливым и для коэффициента отражения, а именно: доверительные интервалы статистических параметров коэффициента отражения больше при его меньших первоначальных значениях.

Таким образом, для рациональной организации процесса ИМ было бы уместным задавать величину доверительного интервала в зависимости от значения ΦX МУ. При таком способе можно существенно уменьшить общее количество реализаций численного эксперимента, а следовательно, повысить эффективность процесса без снижения статистических показателей надежности.

Для решения указанной задачи с целью расчета математического ожидания и среднеквадратического отклонения σ определенного параметра МУ предлагаем использовать рекуррентные формулы, которые можно получить на основании соответствующих соотношений [5] для определения указанных параметров:

$$M_{k+1} = \frac{kM_k + y_{k+1}}{k+1};\tag{1}$$

$$\sigma_{k+1} = \sqrt{\frac{k}{k+1} \left[\sigma_k^2 + \frac{(y_{k+1} - M_k)^2}{k+1} \right]},$$
(2)

где $M_0=0$; $\sigma_0=0$; y_k , y_{k+1} — значение ФХ МУ при k-м и (k+1)-м численном эксперименте соответственно; M_k , $\sigma_k=0$ - определенные по результатам обработки выборки из k элементов математическое ожидание и среднеквадратическое отклонение ФХ соответственно; M_{k+1} , $\sigma_{k+1}=0$ - те же величины, но определенные по результатам выборки из (k+1) элементов.

Использование соотношений (1) и (2) позволяет рационализировать процесс ИМ, обеспечив приемлемую величину доверительных интервалов при вариативности значений ΦX МУ. Для этого достаточно расчеты указанных интервалов проводить одновременно с наращиванием количества реализаций численного эксперимента (начиная, например, с K-й реализации на каждом шагу или с периодичностью m реализаций).

С учетом приведенного, алгоритм реализации численного эксперимента по исследованию влияния параметров включения на ФХ МУ можно представить в следующем виде:

- 1) соответственно характеру использования МУ определить модель параметров включения;
 - 2) принять $M_0 = 0$, $\sigma_0 = 0$;
 - 3) генерировать параметры включения согласно определенной модели;
- 4) рассчитать искомые ΦX МУ при полученных значениях параметров включения в его плечах:
- 5) полученные значения ΦX МУ использовать для определения их статистических параметров (математических ожиданий и среднеквадратических отклонений) с помощью соотношений (1), (2);
 - 6) выполнять π п. 3 5 до достижения выбранного количества K реализаций;
- 7) начиная с K-й реализации, с выбранной периодичностью m, рассчитывать текущие значения доверительных интервалов, выбрав заранее приемлемые доверительные вероятности;
- 8) при условии, что рассчитанные значения доверительных интервалов не хуже приемлемых, расчеты прекратить, в противном случае расчеты повторяют, начиная с п. 3.

Валидность результатов имитационного моделирования

Валидность полученных результатов ИМ означает, что они являются именно теми результатами, для получения которых и был реализован соответствующий численный эксперимент и отражают именно те закономерности, которые являются предметом исследования.

Валидность результатов ИМ, полученных на основании предложенных алгоритмов с введением категории псевдоустройства [3], можно доказать анализом их совпадения с результатами, полученными другими известными алгоритмами (в рамках принятых допущений) [6, 7].

Задачу определения входного импеданса четырехполюсника, нагруженного со стороны выходного плеча произвольным импедансом $Z_{\scriptscriptstyle H} = R_{\scriptscriptstyle H} + j X_{\scriptscriptstyle H}$, будем решать в терминах матрицы передачи классической теории цепей.

Для построения матрицы передачи псевдоустройства [3] $\tilde{\mathbf{a}}$ рассмотрим каскадное включение исследуемого четырехполюсника, заданного матрицей \mathbf{a} , и четырехполюсника, образованного последовательным реактивным импедансом, что совпадает с реактивной составляющей входного импеданса Z_n , т. е. равно $-jX_n$.

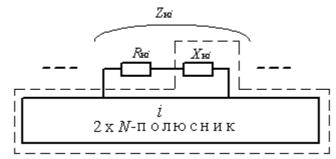


Рис. 3. 2 × N-полюсник, нагруженный на комплексные импедансы (пунктирная линия указывает границы псевдоустройства)

Матрицу передачи четырехполюсника, образованного импедансом jX_n , определяют согласно [6, 7] как

$$\mathbf{a}_{\mathbf{x}} = \begin{bmatrix} 1 & jX_{\scriptscriptstyle H} \\ 0 & 1 \end{bmatrix}. \tag{3}$$

Следовательно, матрица передачи псевдоустройства $\tilde{\mathbf{a}}$ будет иметь вид:

$$\widetilde{\mathbf{a}} = \mathbf{a} \times \mathbf{a}_{\mathbf{x}} = \begin{bmatrix} a_{11}^{(p)} & a_{12}^{(p)} \\ a_{21}^{(p)} & a_{22}^{(p)} \end{bmatrix} \times \begin{bmatrix} 1 & jX_{\scriptscriptstyle H} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a_{11}^{(p)} & a_{12}^{(p)} + ja_{11}^{(p)}X_{\scriptscriptstyle H} \\ a_{21}^{(p)} & a_{22}^{(p)} + ja_{21}^{(p)}X_{\scriptscriptstyle H} \end{bmatrix}, \tag{4}$$

где пометкой (p) отмечены элементы матрицы реального четырехполюсника.

Согласно [6], входной импеданс реального четырехполюсника с нагрузкой $Z_{_{\!\scriptscriptstyle H}}$ определяют как

$$Z_{ex}^{(p)} = \frac{a_{11}^{(p)} Z_{H} + a_{12}^{(p)}}{a_{21}^{(p)} Z_{H} + a_{22}^{(p)}} = \frac{a_{11}^{(p)} R_{H} + a_{12}^{(p)} + j a_{11}^{(p)} X_{H}}{a_{21}^{(p)} R_{H} + a_{22}^{(p)} + j a_{21}^{(p)} X_{H}}.$$
(5)

Так как $Z_{_{_{\!\!H}}}^{^{(n)}}=R_{_{_{\!\!H}}}$ и $\widetilde{\mathbf{a}}$ – матрица передачи псевдоустроўства, с учетом (4) и (5) входной импеданс псевдоустройства определяют

$$Z_{ex}^{(n)} = \frac{a_{11}^{(n)} Z_{n}^{(n)} + a_{12}^{(n)}}{a_{21}^{(n)} Z_{n}^{(n)} + a_{22}^{(n)}} = \frac{a_{11}^{(p)} R_{n} + a_{12}^{(p)} + j a_{11}^{(p)} X_{n}}{a_{21}^{(p)} R_{n} + a_{22}^{(p)} + j a_{21}^{(p)} X_{n}}$$

$$(6)$$

(отметкой (ⁿ) отмечены элементы матрицы псевдоустройства).

Из (5) и (6) видно, что при условии формирования псевдоустройства в соответствии с рис. 3

$$Z_{ex}^{(p)} = Z_{ex}^{(n)}.$$

Таким образом, полученные входные импедансы реального четырехполюсника, нагруженного на комплексный импеданс, и псевдоустройства, нагруженного на импеданс действительного характера (при этом реактивная составляющая сопротивления нагрузки включена в состав МУ), совпадают на аналитическом уровне. Это доказывает валидность

результатов моделирования, полученных на основании введенной категории псевдоустройства.

Адекватность результатов имитационного моделирования

Адекватность результатов ИМ характеризует их соответствие реальным зависимостям ФХ при включении МУ в реальный тракт.

Существующая на сегодняшний день измерительная аппаратура и соответствующие методики предусматривают измерения функциональных характеристик микроволновых устройств исключительно в стандартизированных трактах. Измерить ФХ МП при подключении к его входам / выходам произвольных, а тем более комплексных, нагрузок в общем случае не представляется возможным. Поэтому и невозможным является всестороннее экспериментальное подтверждение полученных результатов ИМ.

При таких условиях адекватность результатов можно подтвердить не непосредственными методами, а путем сведения задачи, которую нужно решить, к более простой. Так аналитические расчеты показывают, что коэффициент отражения от входа псевдоустройства полностью совпадает с коэффициентом отражения микроволнового устройства, нагруженного на комплексный импеданс.

Для подтверждения вышесказанного приведем доказательства совпадения матриц рассеяния мощностей, в терминах которых и определены коэффициенты отражения, реального устройства и псевдоустройства.

Известно, что матрицу рассеяния мощности МУ, нагруженного на произвольный импеданс, определяют на основе соотношения [8]:

$$\widetilde{\mathbf{S}}^{(\mathbf{V})} = \mathbf{F} \times \left[\mathbf{Z} - \mathbf{G}^{\dagger} \right] \times \left[\mathbf{Z} + \mathbf{G} \right]^{-1} \times \mathbf{F}^{-1}, \tag{7}$$

где

$$\mathbf{F} = diag \left[\frac{1}{2\sqrt{\operatorname{Re} Z_{ref1}}}, \frac{1}{2\sqrt{\operatorname{Re} Z_{ref2}}}, \dots, \frac{1}{2\sqrt{\operatorname{Re} Z_{refN}}} \right],$$

$$\boldsymbol{G} = diag[Z_{ref1}, Z_{ref2},, Z_{refN}],$$

Z – матрица импедансов МУ.

Референсные импедансы в общем случае имеют комплексный характер, т. е. определяются как

$$Z_{ref i} = R_{ref i} + jX_{ref i}. (8)$$

С использованием (8) и известных математических положений:

$$\begin{split} &\widetilde{\mathbf{S}}^{(\mathsf{V})} = \mathbf{F} \times \left[\mathbf{Z} - \mathbf{G}^{\dagger} \right] \times \left[\mathbf{Z} + \mathbf{G} \right]^{-1} \times \mathbf{F}^{-1} = \\ &= \mathbf{F} \times \left[\mathbf{Z} - diag[R_{ref 1} - jX_{ref 1}, ..., R_{ref N} - jX_{ref N}] \times \\ &\times \left[\mathbf{Z} + diag[R_{ref 1} + jX_{ref 1}, ..., R_{ref N} + jX_{ref N}]^{-1} \times \mathbf{F}^{-1} = \\ &= \mathbf{F} \times \left[\mathbf{Z} + diag[jX_{ref 1}, ..., jX_{ref N}] - diag[R_{ref 1}, ..., R_{ref N}] \right] \times \\ &\times \left[\mathbf{Z} + diag[jX_{ref 1}, ..., jX_{ref N}] + diag[R_{ref 1}, ..., R_{ref N}] \right]^{-1} \times \mathbf{F}^{-1}, \end{split}$$

определим «новую» матрицу импедансов как матрицу импедансов псевдоустройства:

$$\widetilde{\mathbf{Z}} = \mathbf{Z} + diag[jX_{ref 1}, ..., jX_{ref N}]. \tag{9}$$

Обозначив матрицу импедансов «дополнительного» многополюсника как:

 $Z_X = diag[jX_{ref 1}, ..., jX_{ref N}]$ соотношение (9) представим в форме:

$$\widetilde{\mathbf{Z}} = \mathbf{Z} + \mathbf{Z}_{v}. \tag{10}$$

С учетом (10):

$$\begin{split} \widetilde{\mathbf{S}}^{(\mathbf{V})} &= \mathbf{F} \times \left[\widetilde{\mathbf{Z}} - diag[R_{ref \, 1}, ..., R_{ref \, N}] \right] \times \\ \times \left[\widetilde{\mathbf{Z}} + diag[R_{ref \, 1}, ..., R_{ref \, N}] \right]^{-1} \times \mathbf{F}^{-1} &= \\ &= \mathbf{F} \times \left[\widetilde{\mathbf{Z}} - diag[R_{ref \, 1}, ..., R_{ref \, N}] \right] \times \mathbf{F} \times \\ \times \mathbf{F}^{-1} \times \left[\widetilde{\mathbf{Z}} + diag[R_{ref \, 1}, ..., R_{ref \, N}] \right]^{-1} \times \mathbf{F}^{-1} &= \\ &= \left[\mathbf{F} \times \widetilde{\mathbf{Z}} \times \mathbf{F} - \mathbf{F} \times diag[R_{ref \, 1}, ..., R_{ref \, N}] \times \mathbf{F} \right] \times \\ \times \left[\mathbf{F} \times \widetilde{\mathbf{Z}} \times \mathbf{F} + \mathbf{F} \times diag[R_{ref \, 1}, ..., R_{ref \, N}] \times \mathbf{F} \right]^{-1}. \end{split}$$

В дальнейшем будем учитывать, что

$$\mathbf{F} \times diag[R_{ref1}, ..., R_{refN}] \times \mathbf{F} =$$

$$= diag\left[\frac{1}{2\sqrt{R_{ref1}}}, ..., \frac{1}{2\sqrt{R_{refN}}}\right] \times diag[R_{ref1}, ..., R_{refN}] \times$$

$$\times diag\left[\frac{1}{2\sqrt{R_{ref1}}}, ..., \frac{1}{2\sqrt{R_{refN}}}\right] = \frac{1}{4} \times \mathbf{I}$$
(11)

И

$$\mathbf{F} \times \widetilde{\mathbf{Z}} \times \mathbf{F} = \frac{1}{4} \widetilde{\mathbf{Z}}_{\mu o p M} \tag{12}$$

где $\widetilde{\mathbf{Z}}_{\scriptscriptstyle hopm}$ — нормированная по отношению к активным составляющим референсных импедансов (нагрузок) матрица импедансов мнимого (виртуального) микроволнового устройства (псевдоустройства).

Тогда с учетом (11) и (12):

$$\begin{split} \widetilde{\mathbf{S}}^{(\mathbf{V})} &= \left[\mathbf{F} \times \widetilde{\mathbf{Z}} \times \mathbf{F} - \mathbf{F} \times diag[R_{ref 1}, ..., R_{ref N}] \times \mathbf{F} \right] \times \\ &\times \left[\mathbf{F} \times \widetilde{\mathbf{Z}} \times \mathbf{F} + \mathbf{F} \times diag[R_{ref 1}, ..., R_{ref N}] \times \mathbf{F} \right]^{-1} = \\ &= \frac{1}{4} \left[\widetilde{\mathbf{Z}}_{_{HODM}} - \mathbf{I} \right] \times 4 \left[\widetilde{\mathbf{Z}}_{_{HODM}} - \mathbf{I} \right]^{-1} = \left[\widetilde{\mathbf{Z}}_{_{HODM}} - \mathbf{I} \right] \times \left[\widetilde{\mathbf{Z}}_{_{HODM}} - \mathbf{I} \right]^{-1}. \end{split}$$

Таким образом, полученные зависимости доказывают, что на аналитическом уровне матрицы рассеяния мощности (в том числе и коэффициенты отражения) реального устройства и псевдоустройства совпадают.

Совпадения коэффициентов отражения от входа реального МУ, нагруженного на комплексный импеданс, и от входа псевдоустройства подтверждаются также экспериментально и могут служить признанием адекватности принятой математической модели и результатов имитационного моделирования. Более того, при условии, что параметры включения не имеют мнимой составляющей (т. е. активные), использование категории псевдоустройства приводит к известным результатам, связанным с описанием микроволнового устройства в терминах матриц рассеяния любого вида [8 – 11], либо в терминах соответствующих матриц теории цепей.

Выводы

Полученные оценки качества результатов ИМ МУ относительно параметров включения Наукові праці ВНТУ, 2013, № 1

обеспечивают возможность надёжного использования предложенной методологии моделирования ДЛЯ проектирования различных классов МУ возможностью реальных РЭС и прогнозирования искажений ФХ МУ в составе формирования обоснованных требований элементам ДЛЯ удовлетворительного ПО ee другим функционирования системы в целом.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кузьменко О. Н. Имитационное моделирование СВЧ-фильтров на основе экспериментальных данных / О. Н. Кузьменко, Γ . А. Мирских // 22-я Международная Крымская конф. «СВЧ-техника и телекоммуникационные технологии». Севастополь 10-14 сентября 2012 г.: материалы конф. В 2 т. Т. 1. Севастополь: Вебер, 2012 С. 559 560.
- 2. Кузьменко О. Н. Имитационное моделирование СВЧ устройств, включенных в несогласованные тракты / О. Н. Кузьменко, Γ . А. Мирских // 21-я Международная Крымская конф. «СВЧ-техника и телекоммуникационные технологии». Севастополь 12-16 сентября 2011 г.: материалы конф. В 2 т. Т. 1. Севастополь: Вебер, 2011 C. 440 441.
- 3. Кузьменко О. М. Вплив на характеристики частотно-вибіркових мікрохвильових пристроїв параметрів включення / О. М. Кузьменко, Γ . О. Мірських // Вісник НТУУ «КПІ». Серія Радіотехніка. Радіоапаратобудування. 2012. Вип. 49. С. 129 135
- 4. Morin Dehah. Characterization and Modeling of SOI RF integrated components / Morin Dehah. Universite catholique de louvain laboratoire d'hyperfrequences, 2003. 212 p.
- 5. Вентцель Е. С. Теория вероятностей и ее инженерные приложения. Уч. пособие. / Е. С. Вентцель, Л. А. Овчаров. М. : Высшая школа, 2000. 480 с
- 6. Фельдштейн А. Л. Синтез четырехполюсников и восьмилюсников на СВЧ / А. Л. Фельдштейн, Л. Р. Явич. М. : Связь, 1971. 388 с.
- 7. Матей Д. Л. Фильтры СВЧ, согласующие цепи и цепи связи, т. 1 / Д. Л. Матей, Л. Янг, Е. М. Т. Джонс. М. : Связь, 1971. 439 с.
- 8. Marks R. B. A General Waveguide Circuit Theory / R. B. Marks, D. F. Williams // J. Res. Natl. Inst. Stan. 1992. Vol. 97. P. 543 562.
- 9. Microwave measurements division, Jarvis Drive, Morgan Hill Arbitrary impedance Application Note [Електронний ресурс] // Режим доступу: http://downloadfile.anritsu.com/RefFiles/en-US/Services-Support/Downloads/Application-Notes/Application-Note/11410-00284B.pdf.
- 10. Dobrowolski Janusz A. Microwave network design using scattering matrix / Janusz A. Dobrowolski. Artech house, 2010. p. 269.
- 11. Kurokawa K. Power Waves and the Scattering Matrix / K. Kurokawa // IEEE Trans. Microwave Theory Tech. 1965. Vol. MTT-13, No. 2. P. 194 202.

Кузьменко Оксана Николаевна – аспирантка кафедры радиоприйома и обработки сигналов. Национальный технический университет Украины «Киевский политехнический институт».