УДК 621.983

И. О. Сивак, д. т. н., проф.; С. И. Сухоруков, к. т. н., доц.; Е. И. Шевчук

НАПРЯЖЕННОЕ СОСТОЯНИЕ В ОЧАГЕ ДЕФОРМАЦИИ ЛИСТОВОЙ ЗАГОТОВКИ ПРИ РОТАЦИОННОЙ ВЫТЯЖКЕ ОСЕСИММЕТРИЧНЫХ ДЕТАЛЕЙ

Проведены исследования напряженного состояния в очаге деформации при ротационной вытяжке осесимметричных деталей из листовой заготовки. Установлены закономерности распределения показателей напряженного состояния в очаге деформации и определена величина использованного ресурса пластичности в зависимости от геометрических характеристик ролика, толщины листовой заготовки и механических характеристик материала заготовки.

Ключевые слова: ротационная вытяжка, напряжение, очаг деформации, показатели напряженного состояния, коническая деталь.

В различных отраслях машиностроения нашли широкое применение осесимметрические тонкостенные изделия, к качеству и эксплуатационным свойствам которых предъявляют высокие требования. Для изготовления таких изделий широко применяют методы ротационной вытяжки. На сегодняшний день целый ряд работ посвящен экспериментальным исследованиям процесса ротационной вытяжки [1-3], но при этом практически отсутствуют методы оценки схемы напряженного состояния и величины использованного ресурса пластичности в очаге деформации и их влияния на качество готовых изделий.

Необходимо отметить, что особенность процесса ротационной вытяжки осесимметрических деталей из листовых заготовок заключается в том, что пластическая деформация протекает в локальном объеме контакта инструмента и заготовки. Схема напряженного состояния в этом объеме зависит от формы и размеров заготовки и инструмента, взаимного их размещения и режимов обработки.

Цель данной работы заключается в определении закономерностей распределения показателей напряженного состояния и величины использованного ресурса пластичности в очаге деформации в зависимости от параметров процесса ротационной вытяжки.

В работе рассмотрен процесс ротационной вытяжки тонкой оболочки из листовой заготовки. При этом очаг деформации разбит на три участка (рис. 1). Участок 1 находится в условиях объемного напряженного состояния, а на участке 2 имеет место плоская деформация. В зону 3 отнесен фланец, который находится в условиях плоского напряженного состояния. В работе [4, 5] определено напряженное состояние для участка 2 в полярной системе координат ρ , α с началом координат в центре кривизны рабочей поверхности ролика (рис. 2). В выделенном элементе заготовки, ограниченном радиусами ρ_1 , ρ_2 , и углами $\alpha=0$, $\alpha=\alpha_m$, действуют радиальные напряжения σ_ρ , тангенциальные напряжения σ_α и касательные напряжения $\tau_{\rho\alpha}$. Разница радиусов ρ_2 и ρ_1 равна толщине листовой заготовки δ .

Уравнения равновесия для плоской задачи в полярных координатах имеют вид [4, 5]:

$$\frac{\partial \sigma_{\rho}}{\partial \rho} + \frac{1}{\rho} \cdot \frac{\partial \tau_{\rho\alpha}}{\partial \alpha} + \frac{\sigma_{\rho} - \sigma_{\alpha}}{\rho} = 0;$$

$$\frac{\partial \sigma_{\alpha}}{\partial \alpha} + \rho \cdot \frac{\partial \tau_{\rho\alpha}}{\partial \rho} + 2\tau_{\rho\alpha} = 0.$$
(1)

Условие пластичности в данной задаче принимает вид:

$$\sigma_{\alpha} - \sigma_{\rho} = 2\tau_{s}. \tag{2}$$

После дифференцирования первого уравнения системы (1) по α с учетом условия пластичности (2) и после дифференцирования второго уравнения системы (1) по ρ и вычитания из полученного второго уравнения первого получено уравнение для определения касательных напряжений [4, 5]

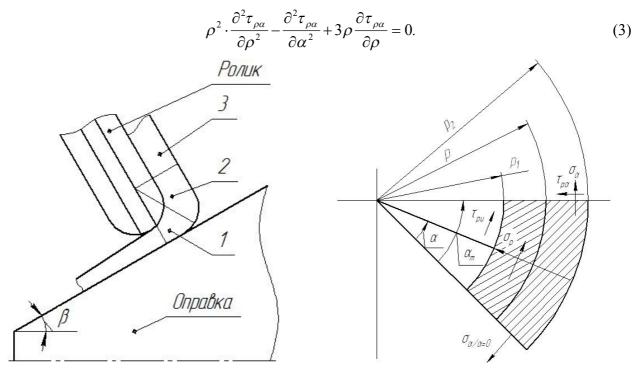


Рис. 1. Схема деления ячейки деформации на участки

Рис. 2. Схема напряженного состояния на участке 2 при ротационной вытяжке

Решение уравнения (3) получено при следующих граничных условиях. В зоне контакта заготовки и ролика при $\rho=\rho_1$ касательные напряжения равны: $\tau_{\rho\alpha}=-m\tau_s$, где m — фактор трения Прандля. На свободной поверхности заготовки при $\rho=\rho_2$ касательные напряжения $\tau_{\rho\alpha}=0$. При $\alpha=0$ касательные напряжения $\tau_{\rho\alpha}=0$, так как данная площадка является главной, а при $\alpha=\alpha_m$ касательные напряжения принимают максимальное значение $\tau_{\rho\alpha}=-\tau_s$. После решения уравнения (3) при принятых граничных условиях в работе [5] для касательного напряжения τ 0 получено следующее выражение

$$\tau_{\rho\alpha} = -\tau_{s}\sqrt{1-c}\frac{\alpha}{\alpha_{m}} + \frac{\tau_{s}\sqrt{1-c}\cdot\sin\left(\frac{\pi\alpha}{\alpha_{m}}\right)}{\rho\cdot\sin\left(\omega\ln\frac{\rho_{2}}{\rho_{1}}\right)}\cdot\left[\rho_{1}\left(m-\frac{\alpha}{\alpha_{m}}\right)\cdot\sin\left(\omega\cdot\ln\frac{\rho}{\rho_{2}}\right) + \rho_{2}\cdot\frac{\alpha}{\alpha_{m}}\cdot\sin\left(\omega\ln\frac{\rho}{\rho_{1}}\right)\right].$$
(4)

Для определения σ_{ρ} задача (1) решена в [4, 5] с использованием метода разделения переменных при однородных граничных условиях:

$$\sigma_{\rho} = \frac{\tau_{s} \cdot \sqrt{1 - c}}{\alpha_{m}} \cdot \left[ln \frac{\rho}{\rho_{2}} + \left(\frac{\rho_{1}}{\rho(1 + \omega^{2})} \cdot \frac{sin\left(\omega ln \frac{\rho}{\rho_{2}}\right) + \omega \cdot cos\left(\omega ln \frac{\rho}{\rho_{2}}\right)}{sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} - \frac{\rho_{1} \cdot \omega}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} \right] \times \frac{sin\left(\omega ln \frac{\rho_{2}}{\rho_{2}}\right) + \omega \cdot cos\left(\omega ln \frac{\rho_{2}}{\rho_{2}}\right)}{sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} + \frac{\rho_{1} \cdot \omega}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} + \frac{\rho_{1} \cdot \omega}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} + \frac{\rho_{1} \cdot \omega}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} + \frac{\rho_{1} \cdot \omega}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} + \frac{\rho_{1} \cdot \omega}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} + \frac{\rho_{1} \cdot \omega}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} + \frac{\rho_{1} \cdot \omega}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} + \frac{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} + \frac{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)} + \frac{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)}{\rho_{2}(1 + \omega^{2}) \cdot sin\left(\omega ln \frac{\rho_{2}}{\rho_{1}}\right)}$$

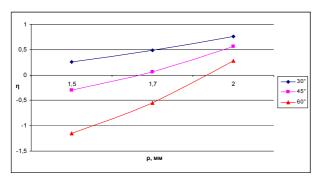
$$\times \left[\pi \cdot cos \left(\frac{\pi \alpha}{\alpha_{m}} \right) \left(m - \frac{\alpha}{\alpha_{m}} \right) - sin \left(\frac{\pi \alpha}{\alpha_{m}} \right) \right] + \\
+ \left[\frac{\rho_{2} \left(sin \left(\omega \ln \frac{\rho}{\rho_{1}} \right) + \omega \cdot cos \left(\omega \ln \frac{\rho}{\rho_{1}} \right) \right)}{\rho \left(1 + \omega^{2} \right) \cdot sin \left(\omega \ln \frac{\rho_{2}}{\rho_{1}} \right)} - \frac{sin \left(\omega \ln \frac{\rho_{2}}{\rho_{1}} \right) + \omega \cdot cos \left(\omega \ln \frac{\rho_{2}}{\rho_{1}} \right)}{\left(1 + \omega^{2} \right) \cdot sin \left(\omega \ln \frac{\rho_{2}}{\rho_{1}} \right)} \right] \times \\
\times \left\{ \frac{\pi \alpha}{\alpha_{m}} \cdot cos \left(\frac{\pi \alpha}{\alpha_{m}} \right) + sin \left(\frac{\pi \alpha}{\alpha_{m}} \right) \right\} \right] + 2\tau_{s} \cdot \sqrt{1 - c} \ln \frac{\rho}{\rho_{2}}. \tag{5}$$

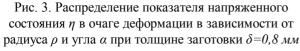
Нормальное напряжение σ_a определяли с уравнения (2).

В данной работе полученные значения σ_{α} , σ_{ρ} , $\tau_{\rho\alpha}$ использованы для анализа схемы напряженного состояния в зоне 2 очага деформации и оценки предельно допустимого формоизменения. При этом показатель напряженного состояния η рассчитывали по формуле [6, 7]

$$\eta = \frac{3\sigma}{\sigma_{u}},\tag{6}$$

где $\sigma = \frac{1}{3}\sigma_{i,j} \cdot \delta_{i,j}$ – среднее напряжение, σ_u – интенсивность напряжений.


Параметр Надаи-Лоде равен:


$$\mu_{\sigma} = \frac{2\sigma_2 - \sigma_1 - \sigma_3}{\sigma_1 - \sigma_3}.\tag{7}$$

Главные напряжения σ_1 , σ_2 , σ_3 рассчитывали по формуле [6]:

$$\sigma_{\frac{max}{min}} = \frac{\sigma_{\alpha} + \sigma_{\rho}}{2} \pm \sqrt{(\sigma_{\alpha} + \sigma_{\rho})^2 + 4\tau_{\rho\alpha}^2}.$$
 (8)

В работе получены закономерности распределения показателя напряженного состояния η и параметр Надаи-Лоде μ_{σ} в очаге деформации в зависимости от радиуса ρ и угла α для листовых заготовок толщиной δ =0,8 мм, δ =1,0 мм и δ =1,2 мм из алюминия АД1 и стали 10. Расчеты выполнены для радиусов рабочей поверхности ролика $R_{po\pi}$ =1,5 мм и $R_{po\pi}$ =4,0 мм. Угол оправки β приняли равным β =45°.

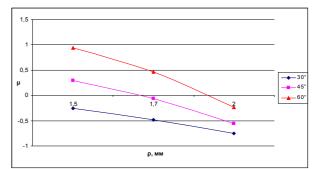
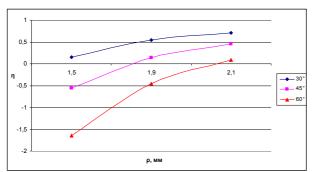



Рис. 4. Распределение параметра Надаи-Лоде μ_{σ} в очаге деформации в зависимости от радиуса ρ и угла α при толщине заготовки δ =0,8 мм

Результаты расчета для ролика с радиусом рабочей поверхности R_{pon} =1,5 мм и различных Наукові праці ВНТУ, 2014, № 4

толщин листовой заготовки приведены на (рис. 3-8). Из анализа полученных результатов следует, что закономерности распределения показателей η и μ_{σ} по объему очага деформации не зависят от материала листовой заготовки. Как видно из приведенных на рис. 3 – 8 зависимостей, показатель напряженного состояния η возрастает с увеличением радиуса ρ и уменьшается при увеличении угла α . Параметр Надаи-Лоде μ_{σ} уменьшается с ростом радиуса ρ и возрастает при увеличении угла α . Например, при δ =0,8 мм R_{pon} =1,5 мм при изменении ρ от $\rho = 1.5$ мм до $\rho = 2.0$ мм показатель η возрастает от $\eta = -1.152$ до $\eta = 0.283$ при $\alpha = 60^{\circ}$ и от $\eta = 0.258$ до $\eta = 0.755$ при $\alpha = 30^{\circ}$ (рис. 3). Параметр Надаи-Лоде μ_{σ} уменьшается при тех же условиях от μ_{σ} =0,939 до μ_{σ} =-0,239 при α =60° и от μ_{σ} =-0,253 до μ_{σ} =-0,755 при α =30° (рис. 4). При фиксированном значении радиуса ρ , например, при $\rho = 1.5$ мм показатель η уменьшается от $\eta = 0.258$ до $\eta = -1.152$ при возрастании α от $\alpha = 30^{\circ}$ до $\alpha = 60^{\circ}$ (рис. 3), а параметр Надаи-Лоде μ_{σ} при тех же условиях возрастает от μ_{σ} =-0,253 до μ_{σ} =0,939 (рис. 4). С ростом толщины листовой заготовки значение показателя η уменьшается, а параметр Надаи-Лоде μ_{σ} возрастает (рис. 3 - 8), то есть чем больше толщина заготовки, тем мягче схема напряженного состояния в очаге деформации и тем меньше интенсивность накопления повреждений и, соответственно, меньше величина использованного ресурса пластичности. Такой результат является важным, так как полученную коническую заготовку планируют использовать в дальнейшем для изготовления детали более сложной формы путем последующей пластической деформации.

1 0.5 1.9 2.1 45° 45° -0.6 0° -0.5 -1 ... 60°

Рис. 5. Распределение показателя напряженного состояния η в очаге деформации в зависимости от радиуса ρ и угла α при толщине заготовки δ =1,0 мм

Рис. 6. Распределение параметра Надаи-Лоде μ_{σ} в очаге деформации в зависимости от радиуса ρ и угла α при толщине заготовки $\delta = 1,0$ мм

При использовании для ротационной вытяжки ролика с радиусом рабочей поверхности $R_{\rho\sigma\pi}=4,0\,$ мм характер зависимостей показателя напряженного состояния η и параметра Надаи-Лоде μ_{σ} от радиуса ρ и угла α аналогичные приведенным на рис. 3-8. Однако численные значения показателя η в среднем на (75-80)% больше, а численные значения параметра Надаи-Лоде μ_{σ} на (60-80)% меньше численных значений этих величин, приведенных на рис. 3-8.

Анализ результатов расчета напряженного состояния показывает, что нагрузка в очаге деформации близка к простой, поэтому величину использованного ресурса пластичности ψ можно определить по критерию Γ . А. Смирнова-Аляева [8]:

$$\psi = \frac{e_u}{e_p(\eta, \mu_\sigma)},\tag{9}$$

где e_u — степень деформации, e_p — предельная деформация для данной схемы напряженного состояния.

Способность материала заготовки к пластической деформации без разрушения при ротационной вытяжке принято характеризовать величиной утончения, которая для деформируемого металла при данной схеме напряженного состояния не должна превышать предельной деформации e_p . В общем случае величину утончения определяют зависимостью Наукові праці ВНТУ, 2014, № 4

[9]:

$$e_u = \ln \frac{h_0}{h} \,, \tag{10}$$

где h_0 — начальная толщина листовой заготовки, h — толщина стенки детали после ротационной вытяжки.

Зависимость пластичности от схемы напряженного состояния описывали поверхностями предельных деформаций, которые для исследуемых материалов аппроксимировали зависимостями [10]:

для стали 10

$$e_p(\eta, \mu_\sigma) = 0.78 \exp(0.59 \cdot \mu_\sigma - 0.71 \cdot \eta),$$
 (11)

для сплава алюминия АД1

$$e_{p}(\eta, \mu_{\sigma}) = 1.2 \exp(0.42 \cdot \mu_{\sigma} - 0.5 \cdot \eta).$$
 (12)

Расчет граничных деформаций e_p по критерию (9) показал, что максимально допустимая величина утончения, при которой материал не будет разрушатся, для листовых заготовок из стали 10 при заданных условиях формоизменения не превышает $e_p \leq 0.35$ при радиусе рабочей поверхности ролика $R_{pon}=1.5$ мм и $e_p \leq 0.26$ при $R_{pon}=4$ мм. Для заготовок из сплава алюминия АД1 максимально допустимая величина утончения не превышает $e_p \leq 0.60$ при $R_{pon}=1.5$ мм и $e_p \leq 0.50$ при $R_{pon}=4$ мм.

Для исследованных толщин листовых заготовок $\delta = 0.8$ мм, $\delta = 1.0$ мм, $\delta = 1.2$ мм максимально допустимая величина утончения практически не зависит от толщины заготовки.

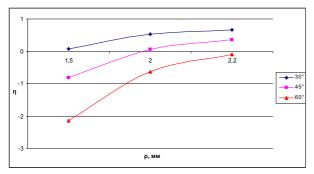


Рис. 7. Распределение показателя напряженного состояния η в очаге деформации в зависимости от радиуса ρ и угла α при толщине заготовки δ =1,2 мм

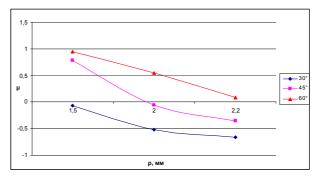


Рис. 8. Распределение параметра Надаи-Лоде μ_{σ} в очаге деформации в зависимости от радиуса ρ и угла α при толщине заготовки δ =1,2 мм

Выводы

Установлено, что при ротационной вытяжке листовых заготовок с ростом толщины заготовки показатель η уменьшается, а параметр Надаи-Лоде μ_{σ} растет. При увеличении радиуса рабочей поверхности ролика показатель η в очаге деформации также растет, а параметр Надаи-Лоде μ_{σ} уменьшается независимо от толщины. Необходимо отметить, что материал заготовки не влияет на характер распределения показателей η и μ_{σ} в очаге деформации. Величина использованного ресурса пластичности ψ в очаге деформации возрастает с увеличением радиуса рабочей поверхности ролика R_{pon} и мало зависит от толщины заготовки при прочих равных условиях.

СПИСОК ЛИТЕРАТУРЫ

1. Маленичев А. С. Взаимосвязь конструктивных характеристик оборудования и технологической оснастки Наукові праці ВНТУ, 2014, № 4

для ротационной вытяжки с параметрами качества получаемых изделий / А. С. Маленичев // Механика деформируемого твердого тела и обработка металлов давленим. – 2000. – С. 215 – 221.

- 2. Могильный Н. И. Ротационная вытяжка оболочковых деталей на станках / Могильный Н. И. М. : Машиностроение, 1983. 190 с.
- 3. Трегубов В. И. Силовые режыми ротационной вытяжки цилиндрических деталей на специализированном оборудовании / В. И. Трегубов, С. П. Яковлев, С. С. Яковлев // Кузнечно-штамповочное производство. Обработка материалов давлением. -2005. -№ 1. -C. 17-23.
- 4. Дудка Д. В. Ротационное формоизменение конических деталей из анизотропных материалов / Д. В. Дудка, С. С. Яковлев // Известия ТулГУ. Технические науки. 2010. Вып. 3. С. 3 11.
- 5. Драбик А. Н. Ротационная вытяжка конических деталей из анизотропных заготовок : дис. ... канд. техн. наук : 05.03.05 / Драбик Андрей Николаевич. Тула, 2010. 207 с.
- 6. Огородников В. А. Деформируемость и разрушение металлов при пластическом формоизменении / Огородников В. А. К. : УМК ВО, 1989. 152 с.
- 7. Богатов А. А. Ресурс пластичности металлов при обработке давлением / А. А. Богатов, О. И. Мижирицкий, С. В. Смирнов. М. : Металлургия, 1984. 144 с.
- 8. Смиронов-Аляев Γ . А. Механические основы пластической обработки металлов / Смирнов-Аляев Γ . А. Л. : Машиностроение, 1968. 272 с.
- 9. Капорович В. Г. Производство деталей из труб обкаткой / В. Г. Капорович. М. : Машиностроение, 1978. 166 с.
- 10. Сивак И. О. Пластичность металлов при объемном напряжённом состоянии / И. О. Сивак, Е. И. Коцюбивская // Удосконалення процесів і обладнання обробки тиском в металургії і машинобудуванні: Тематич. 36. наук. пр. 2007. С. 73 76.

Сивак Иван Онуфриевич – д. т. н., профессор, заведующий кафедрой технологии и автоматизации машиностроения, sivak_i_o@mail.ru.

Сухоруков Сергей Иванович – к. т. н., доцент кафедры технологии и автоматизации машиностроения, ssergeii@ukr.net.

Шевчук Евгений Игоревич – аспирант кафедры технологии и автоматизации машиностроения, Shevae 111@mail.ru.

Винницкий национальный технический университет.