Л. Г. Козлов, д. т. н., проф.; С. В. Репинский, к. т. н., доц.; О. В. Паславская; О. В. Пионткевич

ХАРАКТЕРИСТИКИ МЕХАТРОННОГО ПРИВОДА ПРИ ПРОСТРАНСТВЕННОМ ДВИЖЕНИИ МАНИПУЛЯТОРА

В статье предложена нелинейная математическая модель пространственного движения манипулятора на основе двух индивидуальных гидроприводов с мехатронным управлением. Разработанная математическая модель позволила определить характеристики пространственного движения манипулятора при одновременной работе двух гидроприводов. В частности установлено и проанализировано влияние параметров приводов и манипулятора на величину времени регулирования, перерегулирование и устойчивость переходных процессов при запуске манипулятора в работу.

Ключевые слова: манипулятор, мехатронный привод, математическая модель, переходные процессы, время регулирования, перерегулирование, устойчивость.

Введение

В строительстве и промышленности широко применяют мобильные рабочие машины с манипуляторами. Производители машин наладили выпуск широкой номенклатуры сменных рабочих органов: разного типа захватов, экскавационного оборудования, подъемников, гидроножниц и др. Конструкция манипулятора и система его приводов определяют, в основном, функциональные возможности мобильной рабочей машины, а также ее характеристики. В процессе работы манипулятор мобильной машины движется в пространстве за счет совмещения работы его приводов. Это позволяет повысить производительность работы машины. Однако при совмещении работы приводов они взаимодействуют между собой через конструкцию манипулятора. В переходных процессах (пуск, изменение направления и скорости движения, торможение приводов) возникают сложные динамические процессы, обусловленные одновременной работой приводов и их взаимодействием. Это вызывает повышенную колебательность приводов, снижение быстродействия и возникновение значительного перерегулирования по давлению и, как следствие, перегрузку конструкции манипулятора и машины. На сегодняшний день особенности работы манипуляторов мобильных рабочих машин в режимах одновременной работы их приводов изучены недостаточно, требуют дальнейших исследований и изучения возможности улучшения динамических характеристик. Характеристики и эффективность работы мобильных машин улучшаются при оснащении их механотронными приводами на основе регулируемых насосов и контроллеров [1 – 11].

В работе ставится задача улучшения показателей качества регулирования приводов манипулятора мобильной рабочей машины при совмещении работы мехатронных приводов.

Основная часть

На рис. 1 поставлена схема манипулятора с мехатронным приводом. Схема включает стойку 1, стрелу 2, рукоять 3, захват 4, гидроцилиндры 5, 6 и механизм поворота 7. Манипулятор смонтирован на раме 8 мобильной машины. Во время выполнения рабочих операций раму 8 мобильной машины фиксируют относительно опорной поверхности с помощью аутригеров 10 и 11. Регулируемый насос 12 подает рабочую жидкость через гидролинию 35, гидрораспределители 19 и 20, рабочую гидролинию 21 в гидроцилиндр 5, приводя в движение стрелу 2 манипулятора. Слив рабочей жидкости из гидроцилиндра 5

обеспечивается через рабочую гидролинию 22, гидрораспределитель 20, гидролинию управления 25, тормозной клапан 26 и сливную гидролинию 27. Гидрораспределитель 19 имеет пружину 9 и управляется электромагнитом 31. Регулируемый насос 12 имеет регулятор 13, состоящий из золотника 14 с пружиной 15, дросселей 16 и 36, клапана 17 с электромагнитом 18. Регулируемый насос 12 обеспечивает подачу в гидроцилиндр 5 потока рабочей жидкости, величина которого определяется открытием рабочего окна гидрораспределителя 20. Величина этого потока определяет скорость движения штока 24, а значит, и скорость движения стрелы 2 манипулятора. Гидроцилиндр 23 поворота стойки 1 питается от отдельного насоса, который на схеме не показан.

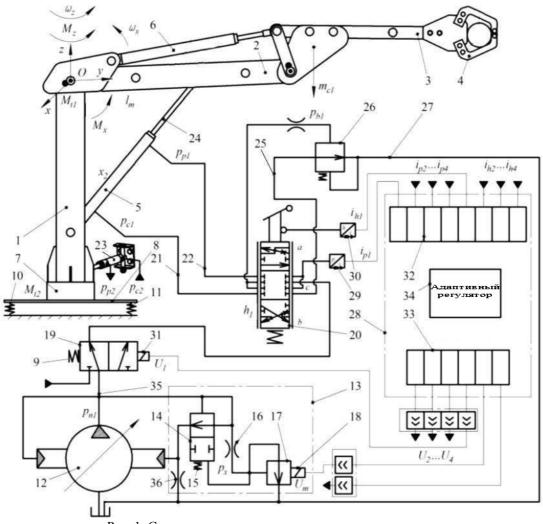


Рис. 1. Схема манипулятора с мехатронным приводом

Работой приводов манипулятора управляет контроллер 28. На входную плату 32 контроллера поступают сигналы от датчика давления 29 и датчика положения 30. На основе сигналов i_{pi} и i_{hi} , поступающих от датчиков 29 и 30, в адаптивном регуляторе 34 контроллера 28 генерируется сигнал, который через выходную плату 33 подается к электромагниту 18 регулятора насоса 13. Алгоритм работы адаптивного регулятора обеспечивает уменьшение амплитуды колебаний сигнала i_{pi} в переходном сигнале, в результате чего обеспечивается уменьшение амплитуды колебаний давления p_{n1} на выходе насоса 12 и их более интенсивное затухание [3]. Это позволяет повысить быстродействие приводов манипулятора, уменьшить перерегулирование по давлению в приводе Наукові праці ВНТУ, 2017, № 2

манипулятора при рациональном выборе значений конструктивных параметров регулятора 13 насоса.

Гидроцилиндры 5, 23 обеспечивают поворот звеньев манипулятора относительно осей x и z. На звенья манипулятора действуют проекции M_x , M_y , M_z главного момента внешних сил $\overline{\mathbf{M}}$. Движение манипулятора определяют проекциями угловых скоростей ω_x , ω_y , ω_z .

Уравнения пространственного движения манипулятора и угловой скорости в проекциях на оси координат имеют вид:

$$\begin{cases} \frac{dL_x}{dt} + \omega_y L_z - \omega_z L_y = M_{\dot{x}} \\ \frac{dL_y}{dt} + \omega_z L_x - \omega_x L_z = M_y; \\ \frac{dL_z}{dt} + \omega_x L_y - \omega_y L_x = M_z; \end{cases} \begin{cases} \omega_x = \left(L_x + I_{xy} \cdot \omega_y + I_{zx} \cdot \omega_z\right) / I_{xx}; \\ \omega_y = \left(L_y + I_{xy} \cdot \omega_x + I_{yz} \cdot \omega_z\right) / I_{yy}; \\ \omega_z = \left(L_z + I_{zx} \cdot \omega_x + I_{yz} \cdot \omega_y\right) / I_{zz}, \end{cases}$$

где L_x , L_y , L_z — проекции кинетического момента $\overline{\bf L}$ подвижных частей манипулятора на оси координат; M_x , M_y , M_z — проекции момента $\overline{\bf M}$ внешних сил, действующих на манипулятор.

Проекции кинетического момента и тензор инерции манипулятора имеют вид:

$$\begin{split} L_x &= I_{xx} \cdot \omega_x - I_{xy} \cdot \omega_y - I_{zx} \cdot \omega_z; \\ L_y &= -I_{xy} \cdot \omega_x + I_{yy} \cdot \omega_y - I_{yz} \cdot \omega_z; \\ L_z &= -I_{zx} \cdot \omega_x - I_{zy} \cdot \omega_y + I_{zz} \cdot \omega_z; \\ \begin{pmatrix} I_{ij} \end{pmatrix} &= \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}. \end{split}$$

Математическая модель привода манипулятора на основе регулируемого насоса имеет вид:

$$\begin{split} I\frac{d^{2}\gamma}{dt^{2}} &= p_{n1} \cdot f_{5} \cdot l - p_{e} \cdot f_{4} \cdot l - \frac{\pi \cdot \rho \cdot v_{k} \cdot d_{4} \cdot l_{4}}{\varepsilon_{0}} \cdot \frac{d\gamma}{dt} \cdot \cos\gamma - M_{v2} + m_{0} + m_{1} \cdot Q_{n1} + \\ &+ m_{2} \cdot p_{n1} + m_{3} \cdot Q_{n1}^{2} + m_{4} \cdot p_{n1}^{2} + m_{5} \cdot p_{n1} \cdot Q_{n1} + m_{f}(\omega_{n}); \\ m_{x}\frac{d^{2}x}{dt^{2}} &= p_{x} \cdot \frac{\pi \cdot d_{x}^{2}}{4} - k_{m} \cdot i_{m1} - \left(\frac{\pi \cdot \rho \cdot v_{k} \cdot d_{x} \cdot l_{x}}{\varepsilon_{x}}\right) \cdot \frac{dx}{dt}; \\ m_{p}\frac{d^{2}z}{dt^{2}} &= p_{n1}\frac{\pi \cdot d_{p}^{2}}{4} - p_{x}\frac{\pi \cdot d_{p}^{2}}{4} - C_{p} \cdot (H_{p} + z) - \frac{\pi \cdot \rho \cdot v_{k} \cdot d_{p} \cdot l_{p}}{\varepsilon_{p}} \cdot \frac{dz}{dt}; \\ m_{b}\frac{d^{2}y_{1}}{dt^{2}} &= p_{b} \cdot \frac{\pi \cdot d_{b}^{2}}{4} - c_{b} \cdot (H_{b} + y_{1}) - A_{g} + B_{g} \cdot p_{p1} - \frac{D_{g}}{y_{1}} + \frac{E_{g}}{y_{1}^{2}} - \\ -\left(\frac{\pi \cdot \rho \cdot v_{k} \cdot d_{b} \cdot l_{b}}{\varepsilon_{b}}\right) \cdot \frac{dy_{1}}{dt}; \end{split}$$

$$\begin{split} F_{7} \cdot d_{8} \cdot k_{1} \cdot n_{n} \cdot tgy - k_{n1} \cdot p_{n1} &= a + b \cdot h_{1} + c \cdot \Delta p_{1} + d \cdot h_{1}^{2} + e \cdot \Delta p_{1}^{2} + f \cdot h_{1} \cdot \Delta p_{1} + \\ &+ \mu \cdot k_{z} \cdot z \cdot \sqrt{\frac{2 \cdot |p_{n1} - p_{0}|}{\rho}} \cdot sign(p_{n1} - p_{0}) + \beta_{n} \cdot W_{n1} \frac{dp_{n1}}{dt}; \\ &= a + b \cdot h_{1} + c \cdot \Delta p_{1} + d \cdot h_{1}^{2} + e \cdot \Delta p_{1}^{2} + f \cdot h_{1} \cdot \Delta p_{1} = \\ &= \frac{F_{c1} \cdot l_{m} \cdot \omega_{x}}{\cos \alpha_{m}} + \beta_{p} \cdot W_{c1} \frac{dp_{c1}}{dt} + \beta_{n} \cdot W_{c1} \frac{dp_{c1}}{dt} - \mu \cdot f_{b} \cdot \sqrt{\frac{2 \cdot |p_{c1} - p_{b1}|}{\rho}} \cdot sign(p_{c1} - p_{b1}); \\ &= \frac{F_{p1} \cdot l_{m} \cdot \omega_{x}}{\cos \alpha_{m}} = \mu \cdot k_{b} \cdot y_{1} \cdot \sqrt{\frac{2 \cdot p_{p1}}{\rho}} + \beta_{p} \cdot W_{p1} \frac{dp_{p1}}{dt}; \\ \mu \cdot f_{b} \cdot \sqrt{\frac{2 \cdot |p_{c1} - p_{b1}|}{\rho}} \cdot sign(p_{c1} - p_{b1}) = \frac{\pi \cdot d_{b}^{2}}{4} \cdot \frac{dy_{1}}{dt} + \beta_{p} \cdot W_{b} \cdot \frac{dp_{b}}{dt} - \\ &- \exp(A_{b} \cdot p_{b} + B_{b} \cdot t^{\circ} + C_{b} \cdot \varepsilon_{b} + D_{b}); \\ \mu \cdot k_{z} \cdot z \sqrt{\frac{2 \cdot |p_{n1} - p_{0}|}{\rho}} \cdot sign(p_{n1} - p_{0}) = \\ &= \mu \cdot f_{0} \cdot \sqrt{\frac{2 \cdot p_{0}}{\rho}} + \beta_{p} \cdot W_{0} \frac{dp_{0}}{dt} + \mu \cdot f_{c} \cdot \sqrt{\frac{2 \cdot |p_{0} - p_{c}|}{\rho}} \cdot sign(p_{0} - p_{c}); \\ \mu \cdot f_{x} \cdot \sqrt{\frac{2 \cdot |p_{n1} - p_{x1}|}{\rho}} \cdot sign(p_{n1} - p_{x1}) = \mu \cdot \pi \cdot d_{x} \cdot x \cdot \sin(\frac{\alpha_{x}}{2}) \cdot \sqrt{\frac{2 \cdot p_{x}}{\rho}} + \beta_{p} \cdot W_{x} \frac{dp_{x}}{dt}; \\ \mu \cdot f_{c} \cdot \sqrt{\frac{2 \cdot |p_{0} - p_{c}|}{\rho}} \cdot sign(p_{0} - p_{c}) = \beta_{p} \cdot W_{c} \frac{dp_{c}}{dt} - \exp(A_{c} \cdot p_{c} + B_{c} \cdot t^{\circ} + C_{c} \cdot \varepsilon_{c} + D_{c}) - \\ &- f_{4} \cdot l \cdot \frac{d\gamma}{dt} \cdot \cos\gamma; \\ p_{c1} \cdot k_{u} \cdot k_{c} \cdot [F_{k}(l_{p1})] = L_{c} \frac{dl_{m1}}{dt} + l_{m1} \cdot R_{c}; \\ M_{x} = p_{c1} \cdot F_{c1} \cdot l_{m} \cdot \cos\alpha_{m} - m_{c1} \cdot g \cdot l_{m} - p_{p1} \cdot F_{p1} \cdot l_{m} \cdot \cos\alpha_{m} - R_{1} \cdot \frac{2 \cdot d_{n1}}{\pi} \cdot sign\omega_{x} - \\ &- M_{n1} \cdot sign\omega_{c} - m_{x} \cdot g \cdot l_{x}. \end{split}$$

Уравнения, описывающие работу привода поворота манипулятора при работе от нерегулируемого насоса в режиме постоянного потока, имеют вид:

$$\begin{split} \boldsymbol{M}_{z} &= \boldsymbol{p}_{c2} \cdot \boldsymbol{F}_{c2} \cdot \boldsymbol{l}_{z} - \boldsymbol{p}_{p2} \cdot \boldsymbol{F}_{p2} \cdot \boldsymbol{l}_{z} - \boldsymbol{M}_{t2} \cdot sign\omega_{z} - \boldsymbol{F}_{r1} \cdot \boldsymbol{f}_{r1} \cdot \frac{d_{r1}}{2} \cdot sign\omega_{z} - \\ &- \boldsymbol{F}_{r2} \cdot \boldsymbol{f}_{r2} \cdot \frac{d_{r2}}{2} \cdot sign\omega_{z}; \\ Q_{n2} &= \omega_{z} \cdot \boldsymbol{l}_{T} \cdot \boldsymbol{F}_{c2} + \boldsymbol{\beta}_{p} \cdot \boldsymbol{W}_{c2} \cdot \frac{d\boldsymbol{p}_{c2}}{dt} + \boldsymbol{\beta}_{n} \cdot \boldsymbol{W}_{c2}' \cdot \frac{d\boldsymbol{p}_{c2}}{dt}; \end{split}$$

$$\beta_{n} = \frac{1}{E_{p}} + \frac{d_{mp}}{\delta_{mp} \cdot E_{mp}(p)};$$

$$E_{p} = \frac{1}{\beta_{p}} = E_{p0} \frac{W_{f} / W_{a} + 1}{W_{f} / W_{a} + (E_{p0} \cdot p_{0}) / p^{2}};$$

где $p_{c1}, p_{p1}, p_e, p_0, p_{b1}$ – давление на входе и выходе гидроцилиндра 5 (см. рис. 1), в регуляторе насоса 12, на входе тормозного клапана 26; z, y_1 – координаты положения золотника регулятора 14 и золотника тормозного клапана давления 26; ω_{x} , ω_{z} – угловые скорости вращения стрелы и манипулятора; у – угол поворота планшайбы регулируемого насоса 12; f_0 – площадь дросселя 36 в регуляторе насоса; F_{c1} , F_{p1} , f_4 , f_5 , f_e , f_b – площади поршня гидроцилиндра 5, сервоцилиндров регулируемого насоса, поршней насоса, демпферов сервоцилиндра насоса и тормозного клапана; D_c , d_p , d_b , d_7 , d_8 , d_x , d_{mv} – диаметры гидроцилиндра 5, золотника 14 регулятора, золотника тормозного клапана, поршней регулируемого насоса и круга контакта поршней насоса с планшайбой, дросселя регулятора насоса, внутренний диаметр трубопроводов; k_q , k_m , k_n , k_c , k_u — коэффициенты удельной силы трения в гидроцилиндре 5, пропорциональности усилия электромагнита, утечек в насосе 12, усиления датчика давления 29 и усилителя; L_{e} , R_{e} — индуктивность и активное сопротивление обмоток электромагнита 18; c_b – жесткость пружины тормозного клапана; i_{m1}, i_{n1}, i_{h1} – токи в обмотках электромагнита клапана 17, на выходе датчика давления 29 и датчика положения 30; F_n , T_c — силы приведенной нагрузки на штоке 24 и трения в гидроцилиндре 5; μ – коэффициент потока через дроссельные и золотниковые элементы; ρ – плотность рабочей жидкости; l_{p} , l_{4} , l_{b} , l – длина контакта золотника регулятора 14, серворцилиндра насоса 12, золотника тормозного клапана 26 с корпусами, плечо действия сервоцилиндров регулируемого насоса 12; І – момент инерции планшайбы насоса; m_p , m_b , m_{c1} , m_g — массы золотников регулятора 14 и тормозного клапана 26, приведенная масса рабочего механизма, масса груза; W_{n1} , W_{0} , W_{c} — объемы гидролиний между насосом 12 и гидрораспределителем 19, между регулятором 14 и сервоцилиндром, между гидрораспределителем 20 и гидроцилиндром 5; n_n – частота вращения вала насоса 12; k_1 – количество поршней в насосе 12; q_0 – удельная сила трения в гидроцилиндре 5; $\varepsilon_{n}, \varepsilon_{n}, \varepsilon_{b}$ – зазоры между золотником регулятора 14, сервоцилиндром насоса 12, золотником тормозного клапана и корпусами; h_1 – открытие рабочего окна пропорционального гидрораспределителя 20; $F_k(i_{pi})$ – передаточная функция, которая реализуется контроллером 28; H_b – предварительное сжатие пружины тормозного клапана $26; m_0, m_1, m_2, m_3$ — коэффициенты зависимости момента сопротивления на планшайбе насоса от расхода и давления; A_g , B_g , D_g , E_g – коэффициенты в формуле гидродинамической силы; A_b , B_b , C_b , D_b – коэффициенты в формуле утечек из камеры управления; ${\cal M}_x$, ${\cal M}_z$ – моменты, развивающие приводы стрелы и поворота манипулятора; M_{t1} , M_{t2} – моменты трения гидроцилиндров стрелы и механизма поворота; p_{c2} , p_{p2} – давления на входе и выходе гидроцилиндра механизма поворота; l_z, l_m, l_g — плечи действия гидроцилиндра механизма поворота, приведенной массы манипулятора и груза; F_{r1} , F_{r2} – реакции в подшипниках механизма поворота; f_{r1} , f_{r2} — коэффициенты трения в подшипниках механизма поворота; F_{c2} , F_{p2} — площади гидроцилиндра механизма поворота; Q_{n2} — расход нерегулируемого насоса; W_{c2} — объем гидролинии между нерегулируемым насосом и гидроцилиндром; β_p — приведенный коэффициент податливости газожидкостной смеси; β_n — приведенный коэффициент резинометаллических трубопроводов и газожидкостной смеси; E_{p0} , E_p , $E_{mp}(p)$ — модуль упругости рабочей жидкости, приведенные модули упругости газожидкостной смеси и резинометаллических трубопроводов; δ_{mp} — толщина стенки трубопровода; W_f — объем жидкостной смеси при величине давления p; W_a — объем газа в газожидкостной смеси при атмосферном давлении.

Пространственное движение манипулятора обеспечивается совмещением вращательного движения стойки 1 (см. рис. 1) с движением стрелы 2 или рукояти 3. Рассмотрена одновременная работа стойки, которую приводит в движение гидроцилиндр 23, и стрелы, которую приводит в движение гидроцилиндр 5. Гидроцилиндры 23 и 5 питаются от отдельных насосов. Каждый из гидроцилиндров 23 и 5 имеет индивидуальный привод, а скорости поршней зависят от открытия рабочих окон пропорциональных распределительных золотников, по которым гидроцилиндры подключены к насосам.

Математическая модель манипулятора позволяет определить характеристики пространственного движения при одновременной работе двух гидроприводов. В работе определено влияние параметров приводов и манипулятора на величину времени регулирования t_p и перерегулирование σ при запуске манипулятора в работу.

На показатели качества регулирования при одновременной работе двух приводов существенно влияет момент инерции манипулятора. На рис. 2 рассмотрено влияние на время регулирования t_p и перерегулирование σ в приводе подъема стрелы при одновременном повороте стойки манипулятора момента инерции манипулятора при различных значениях компонент I_{xx} и I_{zz} .

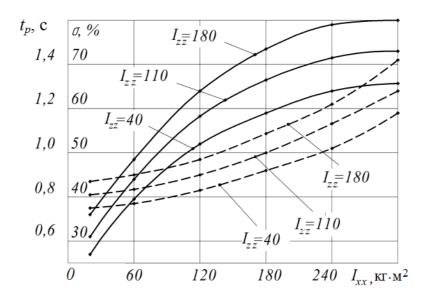


Рис. 2. Зависимость времени регулирования t_p (—) и перерегулирования σ (---) от величин I_{xx} и I_{zz} при совмещении работы двух приводов

Улучшения показателей качества в динамических режимах работы, прежде всего, уменьшения перерегулирования и времени регулирования, достигают в приводах манипулятора за счет рационального выбора конструктивных параметров регулятора насоса. Проведено исследование влияния основных конструктивных параметров регулятора насоса на показатели качества управления в динамических процессах при встречной нагрузке.

На рис. 3 приведено влияние параметров регулятора насоса: площади дросселя f_0 , площади демпфера сервоцилиндра f_e и коэффициента усиления рабочего окна регулятора k_z на время регулирования. Смоделирован процесс запуска гидроцилиндра подъема стрелы при одновременном вращении стойки манипулятора с устоявшейся угловой скоростью $\omega_z = 0.2\,$ рад/с.

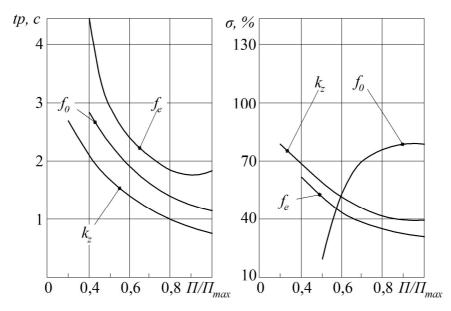


Рис. 3. Влияние параметров демпфера f_e , дросселя f_0 , коэффициента усиления регулятора насоса k_z на время регулирования t_p и перерегулирование σ

Исследования проведены при открытии рабочего окна пропорционального распределительного золотника $h=4\cdot 10^{-3}$ м и встречной нагрузке на стрелу манипулятора $M_x=2,8\cdot 10^4$ Н·м, что соответствует величине давления на входе в гидроцилиндр в установившемся режиме p=16,0 МПа. Увеличение параметров регулятора насоса в диапазонах $f_0=(1,5...4,0)\cdot 10^{-6}$ м² и $k_z=(1,5...6,0)\cdot 10^{-3}$ м уменьшает время регулирования. Площадь демпфера сервоцилиндра f_e влияет на время регулирования неоднозначно. Изменение f_e в диапазоне $(1,0...2,4)\cdot 10^{-6}$ м² уменьшает время регулирования, а дальнейшее ее увеличение приводит к росту t_p . В рассмотренных диапазонах изменения k_z и f_e увеличение этих параметров обеспечивает уменьшение перерегулирования. Изменение площади дросселя f_0 от $1,5\cdot 10^{-6}$ м² до $3,0\cdot 10^{-6}$ м² сопровождает рост величины перерегулирования σ , а дальнейшее увеличение до значений $4,0\cdot 10^{-6}$ м² практически не влияет на величину σ .

На рис. 4а представлена рассчитанная зависимость угловой скорости движения манипулятора в переходном процессе при одновременном запуске гидроцилиндра механизма поворота манипулятора и гидроцилиндра подъема стрелы. В работе манипулятора при сочетании конструктивных параметров регуляторов $f_0 = 1,5 \cdot 10^{-6} \text{ м}^2$, $f_e = \text{Наукові праці ВНТУ, 2017, № 2}$

 $1,0\cdot 10^{-6}~{\rm m}^2,~k_z=1,5\cdot 10^{-3}~{\rm m}$ имеют место незатухающие автоколебания с диапазонами угловой скорости вращения $\omega_x=(-0,05...+6,0)~{\rm pag/c}$ и угловой скорости $\omega_z=(-0,4...+1,0)~{\rm pag/c}$. При одновременном запуске приводов поворота и подъема стрелы и при сочетании конструктивных параметров регуляторов: $f_0=3\cdot 10^{-6}~{\rm m}^2,~f_e=2,0\cdot 10^{-6}~{\rm m}^2,~k_z=3\cdot 10^{-3}~{\rm m}-{\rm m}$ имеет место вид зависимости угловой скорости движения манипулятора, представленный на рис. 4б. Переходный процесс устойчив, хотя и имеет колебательный характер, но за четыре колебания скорость движения стрелы устанавливается равной $\omega_x=0,5~{\rm pag/c},~{\rm cкорость}$ движения стойки манипулятора стабильная и имеет значение $\omega_z=0,2~{\rm pag/c}.$

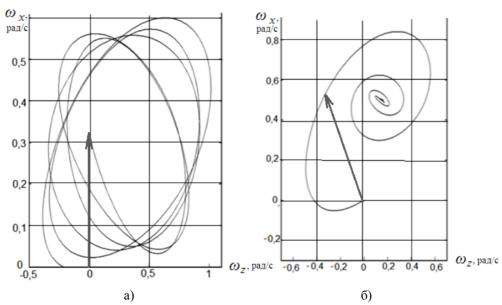


Рис. 4. Зависимость угловой скорости движения манипулятора от времени работы: а — на грани устойчивости; б — при устойчивом движении

Выводы

Обнаружено, что при одновременной работе двух приводов, взаимодействующих через конструкцию манипулятора, переходные процессы проходят при интенсивных колебаниях, время регулирования возрастает, увеличивается перерегулирование по сравнению с работой приводов в автономных режимах. Улучшение показателей качества регулирования может быть достигнуто за счет рационального выбора конструктивных параметров регулятора насоса. Рекомендуется следующие значения конструктивных параметров: $f_0 = 3 \cdot 10^{-6} \,\mathrm{m}^2$, $f_e = 2,0 \cdot 10^{-6} \,\mathrm{m}^2$, $k_z = 3 \cdot 10^{-3} \,\mathrm{m}$. Это позволяет уменьшить нагрузку в конструкции манипулятора и продолжительность цикла работы, что повышает производительность работы машины и ее долговечность.

СПИСОК ЛИТЕРАТУРЫ

- 1. Козлов Л. Г. Зменшення втрат потужності в гідравлічних системах мобільних машин / Л. Г. Козлов // Наукові нотатки ЛНТУ. -2011. -№ 4. -C. 101-107.
- 2. Козлов Л. Г. Застосування нейромережі для зменшення часу регулювання в мехатронній гідросистемі // Вісник Сумського державного університету. Серія «Технічні науки». 2013. № 4. С. 165 174.
- 3. Козлов Л. Г. Наукові основи розробки систем гідроприводів маніпулятора з адаптивним регулятором на основі нейромереж для мобільних робочих машин : дис. ... доктора техн. наук : 05.02.02 / Козлов Леонід Геннадійович. Київ, 2015. 421 с.
 - 4. Бурєнніков Ю. А. Огляд електрогідравлічних систем керування насосами змінної продуктивності /

- Ю. А. Бурєнніков, Л. Г. Козлов, С. В. Репінський // Вісник Хмельницького національного університету. Серія «Технічні науки». 2016. № 2 (235). С. 202 206.
- 5. Репінський С. В. Керування регульованих насосів в гідроприводах, чутливих до навантаження : монографія / С. В. Репінський, Л. Г. Козлов, Ю. А. Бурєнніков. Вінниця : ВНТУ, 2016. 199 с.
- 6. Репінський С. В. Система керування аксіально-поршневого регульованого насоса з профільованим вікном золотника комбінованого регулятора подачі : дис. ... канд. техн. наук : 05.02.02 / Репінський Сергій Володимирович. Вінницький національний технічний університет. Вінниця, 2011. 248 с.
- 7. Бурєнніков Ю. А. Автоматична система керування регульованим насосом / Ю. А. Бурєнніков, Л. Г. Козлов, С. В. Репінський // Вісник Тернопільського державного технічного університету. -2009. Т. 14, № 3. С. 134 141.
- 8. Kozlov L. Optimization of design parameters of the counterbalance valve for the front-end loader hydraulic drive / L. Kozlov, Yu. Burennikov, O. Piontkevych, O. Paslavska // Proceedings of 22nd International Scientific Conference «MECHANIKA 2017». Kaunas University of Technology, Lithuania, 19 May 2017. P. 195 200.
- 9. Polishchuk L. Dynamics of adaptive drive of mobile machine belt conveyor / L. Polishchuk, O. Piontkevych // Proceedings of 22nd International Scientific Conference «MECHANIKA 2017». Kaunas University of Technology, Lithuania, 19 May 2017. P. 307 311.
- 10. Kozlov L. Energy-Saving Mechatronic Drive of the Manipulator / L. Kozlov // Bulletin of the Polytechnic Institute of Iasi. -2011. N = 3 (57) P. 111 118.
- 11. Burennikov Yu. Mechatronic hydraulic drive with regulator, based on artificial neural networks / Yu. Burennikov, L. Kozlov, V. Pyliavets, O. Piontkevych // International Conference on Innovative Research «EUROINVENT ICIR 2017»: book of abstracts. Iasi Romania: StudIS, 25-26 of May 2017. P. 99.

Козлов Леонид Геннадиевич – д. т. н., профессор, заведующий кафедрой технологий и автоматизации машиностроения;

Репинский Сергей Владимирович – к. т. н., доцент, доцент кафедры технологий и автоматизации машиностроения;

Паславская Оксана Витальевна — старший лаборант кафедры технологий и автоматизации машиностроения;

Пионткевич Олег Владимирович – инженер кафедры технологий и автоматизации машиностроения;

Винницкий национальный технический университет.